Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
BMC Med Res Methodol ; 22(1): 229, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35971088

ABSTRACT

An increasing number of large-scale multi-modal research initiatives has been conducted in the typically developing population, e.g. Dev. Cogn. Neur. 32:43-54, 2018; PLoS Med. 12(3):e1001779, 2015; Elam and Van Essen, Enc. Comp. Neur., 2013, as well as in psychiatric cohorts, e.g. Trans. Psych. 10(1):100, 2020; Mol. Psych. 19:659-667, 2014; Mol. Aut. 8:24, 2017; Eur. Child and Adol. Psych. 24(3):265-281, 2015. Missing data is a common problem in such datasets due to the difficulty of assessing multiple measures on a large number of participants. The consequences of missing data accumulate when researchers aim to integrate relationships across multiple measures. Here we aim to evaluate different imputation strategies to fill in missing values in clinical data from a large (total N = 764) and deeply phenotyped (i.e. range of clinical and cognitive instruments administered) sample of N = 453 autistic individuals and N = 311 control individuals recruited as part of the EU-AIMS Longitudinal European Autism Project (LEAP) consortium. In particular, we consider a total of 160 clinical measures divided in 15 overlapping subsets of participants. We use two simple but common univariate strategies-mean and median imputation-as well as a Round Robin regression approach involving four independent multivariate regression models including Bayesian Ridge regression, as well as several non-linear models: Decision Trees (Extra Trees., and Nearest Neighbours regression. We evaluate the models using the traditional mean square error towards removed available data, and also consider the Kullback-Leibler divergence between the observed and the imputed distributions. We show that all of the multivariate approaches tested provide a substantial improvement compared to typical univariate approaches. Further, our analyses reveal that across all 15 data-subsets tested, an Extra Trees regression approach provided the best global results. This not only allows the selection of a unique model to impute missing data for the LEAP project and delivers a fixed set of imputed clinical data to be used by researchers working with the LEAP dataset in the future, but provides more general guidelines for data imputation in large scale epidemiological studies.


Subject(s)
Autistic Disorder , Autistic Disorder/genetics , Bayes Theorem , Child , Data Collection/methods , Humans
3.
Transl Psychiatry ; 7(4): e1109, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28440815

ABSTRACT

Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1-BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1-BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1-BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia.


Subject(s)
Cognition/physiology , DNA Copy Number Variations/genetics , Dyscalculia/genetics , Dyslexia/genetics , Intellectual Disability/genetics , Adolescent , Adult , Aged , Chromosome Aberrations , Chromosome Deletion , Chromosomes, Human, Pair 15/genetics , Developmental Disabilities/genetics , Female , Functional Neuroimaging/methods , Functional Neuroimaging/standards , Heterozygote , Humans , Iceland/epidemiology , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests/standards , Phenotype , Temporal Lobe/anatomy & histology , Temporal Lobe/diagnostic imaging , Young Adult
4.
Psychol Med ; 47(14): 2513-2527, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28436342

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) share abnormalities in hot executive functions such as reward-based decision-making, as measured in the temporal discounting task (TD). No studies, however, have directly compared these disorders to investigate common/distinct neural profiles underlying such abnormalities. We wanted to test whether reward-based decision-making is a shared transdiagnostic feature of both disorders with similar neurofunctional substrates or whether it is a shared phenotype with disorder-differential neurofunctional underpinnings. METHODS: Age and IQ-matched boys with ASD (N = 20), with OCD (N = 20) and 20 healthy controls, performed an individually-adjusted functional magnetic resonance imaging (fMRI) TD task. Brain activation and performance were compared between groups. RESULTS: Boys with ASD showed greater choice-impulsivity than OCD and control boys. Whole-brain between-group comparison revealed shared reductions in ASD and OCD relative to control boys for delayed-immediate choices in right ventromedial/lateral orbitofrontal cortex extending into medial/inferior prefrontal cortex, and in cerebellum, posterior cingulate and precuneus. For immediate-delayed choices, patients relative to controls showed reduced activation in anterior cingulate/ventromedial prefrontal cortex reaching into left caudate, which, at a trend level, was more decreased in ASD than OCD patients, and in bilateral temporal and inferior parietal regions. CONCLUSIONS: This first fMRI comparison between youth with ASD and with OCD, using a reward-based decision-making task, shows predominantly shared neurofunctional abnormalities during TD in key ventromedial, orbital- and inferior fronto-striatal, temporo-parietal and cerebellar regions of temporal foresight and reward processing, suggesting trans-diagnostic neurofunctional deficits.


Subject(s)
Autism Spectrum Disorder/physiopathology , Brain Mapping/methods , Caudate Nucleus/physiopathology , Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Delay Discounting/physiology , Impulsive Behavior/physiology , Obsessive-Compulsive Disorder/physiopathology , Reward , Adolescent , Autism Spectrum Disorder/diagnostic imaging , Caudate Nucleus/diagnostic imaging , Cerebellum/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Child , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging , Male , Obsessive-Compulsive Disorder/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology
5.
Psychol Med ; 46(6): 1197-209, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26708124

ABSTRACT

BACKGROUND: Serotonin is under-researched in attention deficit hyperactivity disorder (ADHD), despite accumulating evidence for its involvement in impulsiveness and the disorder. Serotonin further modulates temporal discounting (TD), which is typically abnormal in ADHD relative to healthy subjects, underpinned by reduced fronto-striato-limbic activation. This study tested whether a single acute dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine up-regulates and normalizes reduced fronto-striato-limbic neurofunctional activation in ADHD during TD. METHOD: Twelve boys with ADHD were scanned twice in a placebo-controlled randomized design under either fluoxetine (between 8 and 15 mg, titrated to weight) or placebo while performing an individually adjusted functional magnetic resonance imaging TD task. Twenty healthy controls were scanned once. Brain activation was compared in patients under either drug condition and compared to controls to test for normalization effects. RESULTS: Repeated-measures whole-brain analysis in patients revealed significant up-regulation with fluoxetine in a large cluster comprising right inferior frontal cortex, insula, premotor cortex and basal ganglia, which further correlated trend-wise with TD performance, which was impaired relative to controls under placebo, but normalized under fluoxetine. Fluoxetine further down-regulated default mode areas of posterior cingulate and precuneus. Comparisons between controls and patients under either drug condition revealed normalization with fluoxetine in right premotor-insular-parietal activation, which was reduced in patients under placebo. CONCLUSIONS: The findings show that a serotonin agonist up-regulates activation in typical ADHD dysfunctional areas in right inferior frontal cortex, insula and striatum as well as down-regulating default mode network regions in the context of impulsivity and TD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Basal Ganglia/drug effects , Delay Discounting/drug effects , Fluoxetine/administration & dosage , Frontal Lobe/drug effects , Selective Serotonin Reuptake Inhibitors/administration & dosage , Adolescent , Attention Deficit Disorder with Hyperactivity/physiopathology , Basal Ganglia/physiopathology , Brain Mapping , Case-Control Studies , Child , Frontal Lobe/physiopathology , Humans , Magnetic Resonance Imaging , Male , Psychiatric Status Rating Scales , Treatment Outcome , United Kingdom , Up-Regulation/drug effects
6.
Psychophysiology ; 52(12): 1559-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26372033

ABSTRACT

Methods for measuring onset latency contrasts are evaluated against a new method utilizing the dynamic time warping (DTW) algorithm. This new method allows latency to be measured across a region instead of single point. We use computer simulations to compare the methods' power and Type I error rates under different scenarios. We perform per-participant analysis for different signal-to-noise ratios and two sizes of window (broad vs. narrow). In addition, the methods are tested in combination with single-participant and jackknife average waveforms for different effect sizes, at the group level. DTW performs better than the other methods, being less sensitive to noise as well as to placement and width of the window selected.


Subject(s)
Brain/physiology , Evoked Potentials/physiology , Reaction Time/physiology , Algorithms , Computer Simulation , Electroencephalography , Humans , Time Factors
7.
Psychopharmacology (Berl) ; 232(21-22): 4205-18, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25980482

ABSTRACT

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain.


Subject(s)
Brain/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Adult , Brain Mapping , Cross-Over Studies , Dopamine Antagonists/pharmacology , Double-Blind Method , Humans , Lamotrigine , Magnetic Resonance Imaging/methods , Male , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Risperidone/pharmacology , Triazines/pharmacology , Young Adult
8.
Psychol Med ; 45(6): 1195-205, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25292351

ABSTRACT

BACKGROUND: Attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are often co-morbid and share performance and brain dysfunctions during working memory (WM). Serotonin agonists modulate WM and there is evidence of positive behavioural effects in both disorders. We therefore used functional magnetic resonance imaging (fMRI) to investigate shared and disorder-specific brain dysfunctions of WM in these disorders, and the effects of a single dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine. METHOD: Age-matched boys with ADHD (n = 17), ASD (n = 17) and controls (n = 22) were compared using fMRI during an N-back WM task. Patients were scanned twice, under either an acute dose of fluoxetine or placebo in a double-blind, placebo-controlled randomized design. Repeated-measures analyses within patients assessed drug effects on performance and brain function. To test for normalization effects of brain dysfunctions, patients under each drug condition were compared to controls. RESULTS: Under placebo, relative to controls, both ADHD and ASD boys shared underactivation in the right dorsolateral prefrontal cortex (DLPFC). Fluoxetine significantly normalized the DLPFC underactivation in ASD relative to controls whereas it increased posterior cingulate cortex (PCC) deactivation in ADHD relative to control boys. Within-patient analyses showed inverse effects of fluoxetine on PCC deactivation, which it enhanced in ADHD and decreased in ASD. CONCLUSIONS: The findings show that fluoxetine modulates brain activation during WM in a disorder-specific manner by normalizing task-positive DLPFC dysfunction in ASD boys and enhancing task-negative default mode network (DMN) deactivation in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Autism Spectrum Disorder/drug therapy , Fluoxetine/pharmacology , Gyrus Cinguli/drug effects , Memory, Short-Term/drug effects , Prefrontal Cortex/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Adolescent , Attention Deficit Disorder with Hyperactivity/physiopathology , Autism Spectrum Disorder/physiopathology , Child , Double-Blind Method , Fluoxetine/administration & dosage , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging , Male , Memory, Short-Term/physiology , Prefrontal Cortex/physiopathology , Selective Serotonin Reuptake Inhibitors/administration & dosage
9.
Eur Neuropsychopharmacol ; 25(1): 26-37, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25532865

ABSTRACT

Cannabis use can induce acute psychotic symptoms and increase the risk of schizophrenia. Impairments in inhibitory control and processing are known to occur both under the influence of cannabis and in schizophrenia. Whether cannabis-induced impairment in inhibitory processing is related to the acute induction of psychotic symptoms under its influence is unclear. We investigated the effects of acute oral administration of 10mg of delta-9-tetrahydrocannabinol (delta-9-THC), the main psychoactive ingredient of cannabis, on inhibitory control and regional brain activation during inhibitory processing in humans and examined whether these effects are related to the induction of psychotic symptoms under its influence using a repeated-measures, placebo-controlled, double-blind, within-subject design. We studied thirty-six healthy, English-speaking, right-handed men with minimal previous exposure to cannabis and other illicit drugs twice using functional magnetic resonance imaging (fMRI) while they performed a response inhibition (Go/No-Go) task. Relative to placebo, delta-9-THC caused transient psychotic symptoms, anxiety, intoxication and sedation, inhibition errors and impaired inhibition efficiency. Severity of psychotic symptoms was directly correlated with inhibition error frequency and inversely with inhibition efficiency under the influence of delta-9-THC. Delta-9-THC attenuated left inferior frontal activation which was inversely correlated with the frequency of inhibition errors and severity of psychotic symptoms and positively with inhibition efficiency under its influence. These results provide experimental evidence that impairments in cognitive processes involved in the inhibitory control of thoughts and actions and inferior frontal function under the influence of cannabis may have a role in the emergence of transient psychotic symptoms under its influence.


Subject(s)
Brain/drug effects , Dronabinol/adverse effects , Hallucinogens/adverse effects , Inhibition, Psychological , Learning Disabilities/chemically induced , Area Under Curve , Brain/blood supply , Chi-Square Distribution , Cross-Over Studies , Decision Making/drug effects , Double-Blind Method , Female , Humans , Image Processing, Computer-Assisted , Male , Oxygen/blood , Psychiatric Status Rating Scales , Statistics as Topic , Time Factors , Visual Analog Scale
10.
Psychol Med ; 44(15): 3315-28, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25065544

ABSTRACT

BACKGROUND: What determines inter-individual variability to impairments in behavioural control that may underlie road-traffic accidents, and impulsive and violent behaviours occurring under the influence of cannabis, the most widely used illicit drug worldwide? METHOD: Employing a double-blind, repeated-measures design, we investigated the genetic and neural basis of variable sensitivity to cannabis-induced behavioural dyscontrol in healthy occasional cannabis users. Acute oral challenge with placebo or Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, was combined with functional magnetic resonance imaging, while participants performed a response inhibition task that involved inhibiting a pre-potent motor response. They were genotyped for rs1130233 single nucleotide polymorphisms (SNPs) of the protein kinase B (AKT1) gene. RESULTS: Errors of inhibition were significantly (p = 0.008) increased following administration of THC in carriers of the A allele, but not in G allele homozygotes of the AKT1 rs1130233 SNP. The A allele carriers also displayed attenuation of left inferior frontal response with THC evident in the sample as a whole, while there was a modest enhancement of inferior frontal activation in the G homozygotes. There was a direct relationship (r = -0.327, p = 0.045) between the behavioural effect of THC and its physiological effect in the inferior frontal gyrus, where AKT1 genotype modulated the effect of THC. CONCLUSIONS: These results require independent replication and show that differing vulnerability to acute psychomotor impairments induced by cannabis depends on variation in a gene that influences dopamine function, and is mediated through modulation of the effect of cannabis on the inferior frontal cortex, that is rich in dopaminergic innervation and critical for psychomotor control.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Inhibition, Psychological , Prefrontal Cortex/drug effects , Proto-Oncogene Proteins c-akt/genetics , Psychomotor Performance/drug effects , Adult , Cannabinoid Receptor Agonists/administration & dosage , Cross-Over Studies , Double-Blind Method , Dronabinol/administration & dosage , Genotype , Humans , Magnetic Resonance Imaging , Male , Polymorphism, Single Nucleotide , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Young Adult
11.
Psychol Med ; 44(3): 633-46, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23597077

ABSTRACT

BACKGROUND: The catecholamine reuptake inhibitors methylphenidate (MPH) and atomoxetine (ATX) are the most common treatments for attention deficit hyperactivity disorder (ADHD). This study compares the neurofunctional modulation and normalization effects of acute doses of MPH and ATX within medication-naive ADHD boys during working memory (WM). METHOD: A total of 20 medication-naive ADHD boys underwent functional magnetic resonance imaging during a parametric WM n-back task three times, under a single clinical dose of either MPH, ATX or placebo in a randomized, double-blind, placebo-controlled, cross-over design. To test for normalization effects, brain activations in ADHD under each drug condition were compared with that of 20 age-matched healthy control boys. RESULTS: Relative to healthy boys, ADHD boys under placebo showed impaired performance only under high WM load together with significant underactivation in the bilateral dorsolateral prefrontal cortex (DLPFC). Both drugs normalized the performance deficits relative to controls. ATX significantly enhanced right DLPFC activation relative to MPH within patients, and significantly normalized its underactivation relative to controls. MPH, by contrast, both relative to placebo and ATX, as well as relative to controls, upregulated the left inferior frontal cortex (IFC), but only during 2-back. Both drugs enhanced fronto-temporo-striatal activation in ADHD relative to control boys and deactivated the default-mode network, which were negatively associated with the reduced DLPFC activation and performance deficits, suggesting compensation effects. CONCLUSIONS: The study shows both shared and drug-specific effects. ATX upregulated and normalized right DLPFC underactivation, while MPH upregulated left IFC activation, suggesting drug-specific laterality effects on prefrontal regions mediating WM.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Frontal Lobe/drug effects , Memory, Short-Term/drug effects , Methylphenidate/pharmacology , Neurotransmitter Uptake Inhibitors/pharmacology , Propylamines/pharmacology , Adolescent , Analysis of Variance , Atomoxetine Hydrochloride , Attention Deficit Disorder with Hyperactivity/physiopathology , Basal Ganglia/drug effects , Basal Ganglia/physiopathology , Brain Mapping , Child , Cross-Over Studies , Double-Blind Method , Frontal Lobe/physiopathology , Functional Laterality , Humans , Magnetic Resonance Imaging/methods , Male , Methylphenidate/administration & dosage , Methylphenidate/therapeutic use , Neuropsychological Tests , Neurotransmitter Uptake Inhibitors/administration & dosage , Neurotransmitter Uptake Inhibitors/therapeutic use , Placebos , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Propylamines/administration & dosage , Propylamines/therapeutic use
12.
Int J Obes (Lond) ; 38(9): 1186-92, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24335762

ABSTRACT

BACKGROUND/OBJECTIVES: Rates of obesity are greatest in middle age. Obesity is associated with altered activity of brain networks sensing food-related stimuli and internal signals of energy balance, which modulate eating behaviour. The impact of healthy mid-life ageing on these processes has not been characterised. We therefore aimed to investigate changes in brain responses to food cues, and the modulatory effect of meal ingestion on such evoked neural activity, from young adulthood to middle age. SUBJECTS/METHODS: Twenty-four healthy, right-handed subjects, aged 19.5-52.6 years, were studied on separate days after an overnight fast, randomly receiving 50 ml water or 554 kcal mixed meal before functional brain magnetic resonance imaging while viewing visual food cues. RESULTS: Across the group, meal ingestion reduced food cue-evoked activity of amygdala, putamen, insula and thalamus, and increased activity in precuneus and bilateral parietal cortex. Corrected for body mass index, ageing was associated with decreasing food cue-evoked activation of right dorsolateral prefrontal cortex (DLPFC) and precuneus, and increasing activation of left ventrolateral prefrontal cortex (VLPFC), bilateral temporal lobe and posterior cingulate in the fasted state. Ageing was also positively associated with the difference in food cue-evoked activation between fed and fasted states in the right DLPFC, bilateral amygdala and striatum, and negatively associated with that of the left orbitofrontal cortex and VLPFC, superior frontal gyrus, left middle and temporal gyri, posterior cingulate and precuneus. There was an overall tendency towards decreasing modulatory effects of prior meal ingestion on food cue-evoked regional brain activity with increasing age. CONCLUSIONS: Healthy ageing to middle age is associated with diminishing sensitivity to meal ingestion of visual food cue-evoked activity in brain regions that represent the salience of food and direct food-associated behaviour. Reduced satiety sensing may have a role in the greater risk of obesity in middle age.


Subject(s)
Aging/physiology , Aging/psychology , Appetite Regulation , Brain/physiopathology , Cues , Eating , Food , Adult , Appetite , Fasting , Female , Humans , Male , Middle Aged , Obesity/physiopathology , Photic Stimulation , Satiation
13.
Psychol Med ; 44(10): 2125-37, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24229474

ABSTRACT

BACKGROUND: Although cognitive behavioral therapy (CBT) is an effective treatment for obsessive-compulsive disorder (OCD), few reliable predictors of treatment outcome have been identified. The present study examined the neural correlates of symptom improvement with CBT among OCD patients with predominantly contamination obsessions and washing compulsions, the most common OCD symptom dimension. METHOD: Participants consisted of 12 OCD patients who underwent symptom provocation with contamination-related images during functional magnetic resonance imaging (fMRI) scanning prior to 12 weeks of CBT. RESULTS: Patterns of brain activity during symptom provocation were correlated with a decrease on the Yale-Brown Obsessive Compulsive Scale (YBOCS) after treatment, even when controlling for baseline scores on the YBOCS and the Beck Depression Inventory (BDI) and improvement on the BDI during treatment. Specifically, activation in brain regions involved in emotional processing, such as the anterior temporal pole and amygdala, was most strongly associated with better treatment response. By contrast, activity in areas involved in emotion regulation, such as the dorsolateral prefrontal cortex, correlated negatively with treatment response mainly in the later stages within each block of exposure during symptom provocation. CONCLUSIONS: Successful recruitment of limbic regions during exposure to threat cues in patients with contamination-based OCD may facilitate a better response to CBT, whereas excessive activation of dorsolateral prefrontal regions involved in cognitive control may hinder response to treatment. The theoretical implications of the findings and their potential relevance to personalized care approaches are discussed.


Subject(s)
Cognitive Behavioral Therapy/methods , Limbic System/physiopathology , Obsessive-Compulsive Disorder/physiopathology , Obsessive-Compulsive Disorder/therapy , Outcome Assessment, Health Care/methods , Prefrontal Cortex/physiopathology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
14.
Br J Psychiatry ; 203(3): 310-1, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23969484

ABSTRACT

Differentiating bipolar from recurrent unipolar depression is a major clinical challenge. In 18 healthy females and 36 females in a depressive episode--18 with bipolar disorder type I, 18 with recurrent unipolar depression--we applied pattern recognition analysis using subdivisions of anterior cingulate cortex (ACC) blood flow at rest, measured with arterial spin labelling. Subgenual ACC blood flow classified unipolar v. bipolar depression with 81% accuracy (83% sensitivity, 78% specificity).


Subject(s)
Bipolar Disorder/diagnosis , Depressive Disorder/diagnosis , Gyrus Cinguli/blood supply , Diagnosis, Differential , Female , Humans , Pattern Recognition, Automated , Recurrence , Sensitivity and Specificity
15.
Schizophr Res Treatment ; 2012: 176290, 2012.
Article in English | MEDLINE | ID: mdl-22966432

ABSTRACT

Formal thought disorder is a feature schizophrenia that manifests as disorganized, incoherent speech, and is associated with a poor clinical outcome. The neurocognitive basis of this symptom is unclear but it is thought to involve an impairment in semantic processing classically described as a loosening of meaningful associations. Using a paradigm derived from the n400 event-related, potential, we examined the extent to which regional activation during semantic processing is altered in schizophrenic patients with formal thought disorder. Ten healthy control and 18 schizophrenic participants (9 with and 9 without formal thought disorder) performed a semantic decision sentence task during an event-related functional magnetic resonance imaging experiment. We employed analysis of variance to estimate the main effects of semantic congruency and groups on activation and specific effects of formal thought disorder were addressed using post-hoc comparisons. We found that the frontotemporal network, normally engaged by a semantic decision task, was underactivated in schizophrenia, particularly in patients with FTD. This network is implicated in the inhibition of automatically primed stimuli and impairment of its function interferes with language processing and contributes to the production of incoherent speech.

17.
Ann Oncol ; 23(3): 791-800, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21665955

ABSTRACT

BACKGROUND: Pertuzumab, a human epidermal growth factor receptor (HER) 2 dimerization inhibitor, has demonstrated promising efficacy in combination with trastuzumab in patients with metastatic breast cancer. As HER signaling pathways are not only involved in oncogenesis, but also in myocardial homeostasis, an analysis of cardiac safety data was undertaken in a large group of patients treated with pertuzumab. PATIENTS AND METHODS: A complete database of patients treated with full-dose pertuzumab was used to describe the incidence of asymptomatic left ventricular systolic dysfunction (LVSD) and symptomatic heart failure (HF). RESULTS: Information for 598 unique patients was available for the current analysis. Of the patients treated with pertuzumab alone (n = 331) or pertuzumab in combination with a non-anthracycline-containing cytotoxic (n = 175) or trastuzumab (n = 93), 23 (6.9%), 6 (3.4%), and 6 (6.5%), respectively, developed asymptomatic LVSD and 1 (0.3%), 2 (1.1%), and 1 (1.1%), respectively, displayed symptomatic HF. None of the 15 patients receiving both pertuzumab and erlotinib demonstrated LVSD. CONCLUSIONS: Patients treated with pertuzumab experienced relatively low levels of asymptomatic LVSD or symptomatic HF. There was no notable increase in cardiac side-effects when pertuzumab was given in combination with other anticancer agents.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents/adverse effects , Heart Failure/epidemiology , Heart/drug effects , Neoplasms/drug therapy , Clinical Trials, Phase II as Topic , Heart Failure/chemically induced , Humans , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/epidemiology
18.
J Neurol ; 258(12): 2186-98, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21556876

ABSTRACT

Since amyotrophic lateral sclerosis (ALS) can be accompanied by executive dysfunction, it is hypothesised that ALS patients will have impaired performance on tests of cognitive inhibition. We predicted that ALS patients would show patterns of abnormal activation in extramotor regions when performing tests requiring the inhibition of prepotent responses (the Stroop effect) and the inhibition of prior negatively primed responses (the negative priming effect) when compared to healthy controls. Functional magnetic resonance imaging was used to measure activation during a sparse sequence block design paradigm investigating the Stroop and negative priming effects in 14 ALS patients and 8 healthy age- and IQ-matched controls. Behavioural measures of performance were collected. Both groups' reaction times (RTs) reflected the Stroop effect during scanning. The ALS and control groups did not differ significantly for any of the behavioural measures but did show significant differences in cerebral activation during both tasks. The ALS group showed increased activation predominantly in the left middle temporal gyrus (BA 20/21), left superior temporal gyrus (BA 22) and left anterior cingulate gyrus (BA 32). Neither group's RT data showed clear evidence of a negative priming effect. However the ALS group showed decreased activation, relative to controls, particularly in the left cingulate gyrus (BA 23/24), left precentral gyrus (BA 4/6) and left medial frontal gyrus (BA 6). Greater cerebral activation in the ALS group accompanying the performance of the Stroop effect and areas of decreased activation during the negative priming comparison suggest altered inhibitory processing in ALS, consistent with other evidence of executive dysfunction in ALS. The current findings require further exploration in a larger study.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Attention/physiology , Brain Mapping , Cerebral Cortex/physiopathology , Amyotrophic Lateral Sclerosis/psychology , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Reaction Time/physiology , Stroop Test
19.
Psychol Med ; 40(12): 1987-99, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20214840

ABSTRACT

BACKGROUND: Impaired spatial working memory (SWM) is a robust feature of schizophrenia and has been linked to the risk of developing psychosis in people with an at-risk mental state (ARMS). We used functional magnetic resonance imaging (fMRI) to examine the neural substrate of SWM in the ARMS and in patients who had just developed schizophrenia. METHOD: fMRI was used to study 17 patients with an ARMS, 10 patients with a first episode of psychosis and 15 age-matched healthy comparison subjects. The blood oxygen level-dependent (BOLD) response was measured while subjects performed an object-location paired-associate memory task, with experimental manipulation of mnemonic load. RESULTS: In all groups, increasing mnemonic load was associated with activation in the medial frontal and medial posterior parietal cortex. Significant between-group differences in activation were evident in a cluster spanning the medial frontal cortex and right precuneus, with the ARMS groups showing less activation than controls but greater activation than first-episode psychosis (FEP) patients. These group differences were more evident at the most demanding levels of the task than at the easy level. In all groups, task performance improved with repetition of the conditions. However, there was a significant group difference in the response of the right precuneus across repeated trials, with an attenuation of activation in controls but increased activation in FEP and little change in the ARMS. CONCLUSIONS: Abnormal neural activity in the medial frontal cortex and posterior parietal cortex during an SWM task may be a neural correlate of increased vulnerability to psychosis.


Subject(s)
Frontal Lobe/physiopathology , Memory, Short-Term/physiology , Parietal Lobe/physiopathology , Schizophrenia/physiopathology , Schizophrenic Psychology , Adult , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging , Male , Task Performance and Analysis , Young Adult
20.
Acta Psychiatr Scand ; 122(4): 295-301, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20064129

ABSTRACT

OBJECTIVE: People with 'prodromal' symptoms have a very high risk of developing psychosis. We examined the neurocognitive basis of this vulnerability by using functional MRI to study subjects with an at-risk mental state (ARMS) while they performed a random movement generation task. METHOD: Cross-sectional comparison of individuals with an ARMS (n = 17), patients with first episode schizophreniform psychosis (n = 10) and healthy volunteers (n = 15). Subjects were studied using functional MRI while they performed a random movement generation paradigm. RESULTS: During random movement generation, the ARMS group showed less activation in the left inferior parietal cortex than controls, but greater activation than in the first episode group. CONCLUSION: The ARMS is associated with abnormalities of regional brain function that are qualitatively similar to those in patients who have recently presented with psychosis but less severe.


Subject(s)
Cerebral Cortex/pathology , Psychotic Disorders , Adult , Antipsychotic Agents/therapeutic use , Causality , Cerebral Cortex/drug effects , Cerebral Cortex/physiopathology , Cross-Sectional Studies , Disease Susceptibility , Humans , Magnetic Resonance Imaging , Mental Health , Motor Activity , Psychotic Disorders/diagnosis , Psychotic Disorders/epidemiology , Psychotic Disorders/physiopathology , Psychotic Disorders/therapy , Schizophrenia/diagnosis , Schizophrenia/epidemiology , Schizophrenia/physiopathology , Schizophrenia/therapy , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...