Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(2): e0191847, 2018.
Article in English | MEDLINE | ID: mdl-29408854

ABSTRACT

Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant.


Subject(s)
Cacao/physiology , Droughts , Stress, Physiological , Biomass , Brazil , Cacao/growth & development , Climate Change , Plant Leaves/physiology , Plant Roots/physiology
2.
PLoS One ; 12(6): e0178790, 2017.
Article in English | MEDLINE | ID: mdl-28628670

ABSTRACT

Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong genetic components were observed from many of the correlations, which indicate the possibility to formulate selection indices for multi-traits, such as dwarfism or semidwarfism, tolerance to increase of leaf sodium concentrations and maintenance of the photosynthetic apparatus integrity under these conditions. Additionally, plants with higher carbon fixation, better water use, higher carboxylation efficiency and greater magnesium accumulation in leaves can be selected.


Subject(s)
Cacao/genetics , Crosses, Genetic , Biomass , Cacao/physiology , Chlorophyll/chemistry , Chlorophyll/metabolism , Chlorophyll A , Fluorometry , Genotype , Phenotype , Photosynthesis , Plant Breeding , RNA, Plant/genetics , RNA, Plant/metabolism , Transcriptome
3.
PLoS One ; 11(8): e0160647, 2016.
Article in English | MEDLINE | ID: mdl-27504627

ABSTRACT

This study aimed to estimate the combining ability, of T. cacao genotypes preselected for drought tolerance through diallel crosses. The experiment was conducted under greenhouse conditions at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a completely randomized block design, in an experimental arrangement 21 x 2 [21 complete diallel crosses and two water regimes (control and stressed)]. In the control, soil moisture was kept close to field capacity, with predawn leaf water potential (ΨWL) ranging from -0.1 to -0.5 MPa. In the drought regime, the soil moisture was reduced gradually by decreasing the amount of water application until ΨWL reached -2.0 to -2.5 MPa. Significant differences (p < 0.05) were observed for most morphological attributes analyzed regarding progenies, water regime and their interactions. The results of the joint diallel analysis revealed significant effects between general combining ability (GCA) x water regimes and between specific combining ability (SCA) x water regimes. The SCA 6 genetic material showed high general combining ability for growth variables regardless of the water regime. In general, the water deficit influenced the production of biomass in most of the evaluated T. cacao crosses, except for SCA-6 x IMC-67, Catongo x SCA, MOC-01 x Catongo, Catongo x IMC-67 and RB-40 x Catongo. Multivariate analysis showed that stem diameter (CD), total leaf area (TLA), leaf dry biomass (LDB), stem dry biomass (SDB), root dry biomass (RDB), total dry biomass (TDB), root length (RL), root volume (RV), root diameter (RD) <1 mm and 1 <(RD) <2 mm were the most important growth parameters in the separation of T. cacao genotypes in to tolerant and intolerant to soil water deficit.


Subject(s)
Alleles , Cacao/growth & development , Cacao/genetics , Droughts , Hybridization, Genetic , Cacao/physiology , Genotype , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...