Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Insects ; 15(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38786889

ABSTRACT

The invasive Argentine ant (Linepithema humile) poses a significant threat to ecosystem stability worldwide. In Mediterranean citrus ecosystems, its spread may be limited by interactions with dominant native ant species. We conducted laboratory experiments to investigate the competitive dynamics between Argentine ants and two major native species, Tapinoma nigerrimum and Lasius grandis. At the individual level, both native species exhibited superior competitive performance, attributed to their larger body sizes and potential differences in chemical defences. At the colony level, T. nigerrimum demonstrated efficiency in interference competition, successfully defending food resources from Argentine ants. However, the Argentine ant exhibited higher recruitment capacity, albeit it was density-dependent. Our findings support the hypothesis that dominant native ants can serve as barriers against Argentine ant invasion in citrus ecosystems, highlighting the importance of interspecific competition in shaping community dynamics and invasive species management. This study underscores the potential role of native ant species in mitigating the impacts of invasive ants on ecosystem functioning and biodiversity conservation in agricultural landscapes, offering valuable insights for invasive species management strategies in Mediterranean citrus ecosystems.

2.
Ecol Evol ; 12(3): e8709, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342614

ABSTRACT

Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.

3.
Biodivers Data J ; 10: e93995, 2022.
Article in English | MEDLINE | ID: mdl-36761520

ABSTRACT

Background: Bark and ambrosia beetles (Coleoptera, Scolytinae) are amongst the most important wood-boring insects introduced to Europe. During field investigations conducted between 2019 and 2021 in different countries and regions of Europe, many exotic species have been recorded providing new and relevant data. New information: Dryoxylononoharaense (Murayama, 1933) is recorded in Europe for the first time. Xyleborinusattenuatus (Blandford, 1894) is a species new to Italy, while Xylosandrusgermanus (Blandford, 1894), Hypothenemuseruditus (Westwood, 1836) and Amasa sp. near A.truncata are new country records for Portugal. Cnestusmutilatus (Blandford, 1894), Phloeotribusliminaris (Harris, 1852) were collected in Italy and Amasa sp. near A.truncata was collected in France after the first discovery, confirming their establishment and their dispersal into new areas.

4.
Insects ; 11(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187222

ABSTRACT

The invasion of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera, Formicidae) can alter the entire ecosystem with serious impacts on the native community structure (e.g., ant diversity) and processes (e.g., trophic interactions) leading to biodiversity loss and pest outbreaks. Most studies addressing these impacts have been conducted in natural or semi-natural areas, few are those conducted in agricultural ecosystems, such as citrus orchards. These are dominant agricultural ecosystems in Mediterranean landscapes. Furthermore, most studies have been conducted in a short span, not evidencing seasonal fluctuations. In this work, we assessed the ecological impact of the Argentine ant on the native ant communities in citrus orchards, in the region of Algarve, southern Portugal. By using principal response curve, we compared seasonal variation on ant assemblages in invaded and uninvaded citrus orchards foraging on tree canopy from a two-year sampling. The Argentine ant had a marked negative impact on the native ant community foraging on citrus canopy. In the uninvaded orchards, the native ant community had a rich assemblage composed of 16 ant species, in its majority (72%) controlled by the dominant species Lasius grandis Forel, Tapinoma nigerrimum (Nylander) and/or Pheidole pallidula (Nylander). In the invaded orchards, the native ant community was poorer and highly modified, mostly dominated by the Argentine ant (80%). Apparently, the only native ant species not affected by the presence of the Argentine ant was Plagiolepis pygmaea (Latreille). A significant negative effect was found between the proportion of infested trees by L. humile and the number of native ant species per orchard. Differences in the native ant community in the invaded and uninvaded orchards persisted over seasons and years. However, negative impacts were higher in the spring and summer, and less pronounced in the autumn. We discuss implications for citrus pest management.

5.
Sci Rep ; 10(1): 3487, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32103053

ABSTRACT

The bronze bug, Thaumastocoris peregrinus, an Australian native insect, has become a nearly worldwide invasive pest in the last 16 years and has been causing significant damage to eucalypts (Myrtaceae), including Eucalyptus spp. and Corymbia spp. Its rapid expansion leads to new questions about pathways and routes that T. peregrinus used to invade other continents and countries. We used mtDNA to characterize specimens of T. peregrinus collected from 10 countries where this species has become established, including six recently invaded countries: Chile, Israel, Mexico, Paraguay, Portugal, and the United States of America. We then combined our mtDNA data with previous data available from South Africa, Australia, and Europe to construct a world mtDNA network of haplotypes. Haplotype A was the most common present in all specimens of sites sampled in the New World, Europe, and Israel, however from Australia second more frequently. Haplotype D was the most common one from native populations in Australia. Haplotype A differs from the two major haplotypes found in South Africa (D and G), confirming that at least two independent invasions occurred, one from Australia to South Africa, and the other one from Australia to South America (A). In conclusion, Haplotype A has an invasion success over many countries in the World. Additionally, analyzing data from our work and previous reports, it is possible to suggest some invasive routes of T. peregrinus to predict such events and support preventive control measures.


Subject(s)
Heteroptera/genetics , Animals , Asia , Australia , DNA, Mitochondrial/genetics , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , Europe , Genetic Variation , Haplotypes , Insect Proteins/chemistry , Insect Proteins/genetics , North America , South America
6.
J Environ Manage ; 232: 1066-1074, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-33395758

ABSTRACT

Herbivory, plant facilitation, and competition have complex impacts on tree regeneration which are seldom investigated together. Grazing exclosure experiments have allowed quantification of the effects of large herbivores on tree regeneration dynamics but have often ignored the effect of herbivorous insects. We experimentally tested how folivory (percentage of leaf damaged by insects) and microenvironment (tree canopy cover and herbs) jointly alter performance (growth and survival) of seedlings of two dominant Mediterranean oak-species within ungulate exclosures in a 3-year field study. An agroforestry system dominated by cork oak (Quercus suber) and holm oak (Q. rotundifolia) was assessed in south-east Portugal. We aimed also to determine whether the two oak species differed in the interdependences between folivory, microenvironment, covaring factors, and seedling performance. Unexpectedly, under the low-moderate insect defoliation, growth and survival of cork and holm oak seedlings were positively associated with herbivore damage. Herb removal increased oak folivory by 1.4 times. Herb removal was also positively associated with growth, directly and indirectly through its negative effect on oak folivory. Tree canopy favored insect folivory upon cork oak seedlings directly and upon holm oak indirectly via decreasing light availability. Folivory was threefold greater upon cork than upon holm oak-seedlings. Our study shows that tree canopy, herbs, and covarying factors can affect cork and holm oak-seedling performances through complex pathways, which markedly differ for the two species. The combined effect of insect herbivory and positive and negative plant-plant interactions need to be integrated into future tree regeneration efforts toward tackling the regeneration crisis of oak agroforestry systems of the Mediterranean.

7.
Insect Sci ; 24(2): 325-335, 2017 Apr.
Article in English | MEDLINE | ID: mdl-26530538

ABSTRACT

Phenology allows organisms to overcome seasonally variable conditions through life-cycle adjustment. Changes in phenology can drastically modify the evolutionary trajectory of a population, while a shift in the reproductive time may cause allochronic differentiation. The hypothesis of heritable reproductive time was experimentally tested, by studying a unique population of the pine processionary moth Thaumetopoea pityocampa (Den. & Schiff.) which has a shifted phenology, and however co-occurs with the typical population following the classical life cycle. When populations of both types were reared under controlled conditions, the reproductive time was maintained asynchronous, as observed in the field. The shifted population was manipulated in the laboratory to reproduce later than usual, yet the offspring emerged in the next year at the expected dates thus "coming back" to the usual cycle. Hybrids from crosses performed between the 2 populations showed an intermediate phenology. From the emergence times of parents and offspring, a high heritability of the reproductive time (h = 0.76) was observed. The offspring obtained from each type of cross was genetically characterized using microsatellite markers. Bayesian clustering analysis confirmed that hybrids can be successfully identified and separated from the parental genetic classes by genotyping. Findings support the hypothesis that, for this particular population, incipient allochronic speciation is due to a heritable shift in the reproductive time that further causes assortative mating and might eventually cause ecological adaptation/maladaptation in response to environmental changes.


Subject(s)
Moths/genetics , Animals , Bayes Theorem , Female , Genetic Speciation , Hybridization, Genetic , Male , Microsatellite Repeats , Moths/physiology , Reproduction/physiology , Seasons , Time Factors
8.
PLoS One ; 10(4): e0122788, 2015.
Article in English | MEDLINE | ID: mdl-25856082

ABSTRACT

The increased use of molecular tools for species identification in recent decades revealed that each of many apparently generalist parasitoids are actually a complex of morphologically similar congeners, most of which have a rather narrow host range. Ooencyrtus pityocampae (OP), an important egg parasitoid of the pine processionary moth (PPM), is considered a generalist parasitoid. OP emerges from PPM eggs after winter hibernation, mainly in spring and early summer, long before the eggs of the next PPM generation occurs. The occurrence of OP in eggs of the variegated caper bug (CB) Stenozygum coloratum in spring and summer suggests that OP populations alternate seasonally between PPM and CB. However, the identity of OP population on CB eggs seemed uncertain; unlike OP-PPM populations, the former displayed apparently high male/female ratios and lack of attraction to the PPM sex pheromone. We studied the molecular identities of the two populations since the morphological identification of the genus Ooencyrtus, and OP in particular, is difficult. Sequencing of COI and ITS2 DNA fragments and AFLP analysis of individuals from both hosts revealed no apparent differences between the OP-PPM and the OP-CB populations for both the Israeli and the Turkish OPs, which therefore supported the possibility of host alternation. Sequencing data extended our knowledge of the genetic structure of OP populations in the Mediterranean area, and revealed clear separation between East and West Mediterranean populations. The overall level of genetic diversity was rather small, with the Israeli population much less diverse than all others; possible explanations for this finding are discussed. The findings support the possibility of utilizing the CB and other hosts for enhancing biological control of the PPM.


Subject(s)
Genetic Variation , Heteroptera/parasitology , Moths/parasitology , Ovum/parasitology , Wasps/genetics , Wasps/physiology , Amplified Fragment Length Polymorphism Analysis , Animals , Base Sequence , DNA Primers/genetics , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Genetics, Population , Host-Parasite Interactions , Mediterranean Region , Molecular Sequence Data , Seasons , Sequence Analysis, DNA , Sex Ratio , Species Specificity
9.
J Environ Manage ; 149: 17-26, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25463567

ABSTRACT

Multidisciplinary knowledge on the impact caused by invasive alien species (IAS) on ecosystems is crucial for guiding policy makers in the adoption of sustainable management measures. This research was focused on insect IAS impacts on two managed ecosystems: eucalypt plantations and citrus orchards. It begins with an identification of the wide range of ecosystem services (ES) and disservices provided by each of these managed ecosystems, according to the methodology proposed by the Millennium Ecosystem Assessment. Subsequently, a comprehensive review of studies that promoted the identification and valuation of direct and indirect impacts IAS impacts on these ecosystems was performed. From the synthesis of previous findings, an integrative management framework is advanced. This links the identification of ES, drivers of change and development of IAS management strategies by means of assessment processes that account for multiple dimensions of ES values. The article concludes with a discussion on the challenges underpinning assessment and valuation approaches that inform the design of inclusive strategies and interventions to tackle IAS impacts.


Subject(s)
Agriculture/economics , Citrus/growth & development , Ecosystem , Eucalyptus/growth & development , Insecta , Introduced Species/economics , Models, Economic , Animals , Introduced Species/statistics & numerical data
10.
J Chem Ecol ; 39(1): 50-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23254379

ABSTRACT

Surveillance using attractants for invasive species can allow early detection of new incursions and provide decision support to response programs. Simultaneous trapping for multiple species, by baiting traps with several lures, is expected to increase the number of species that can be targeted in surveillance programs and improve the cost-effectiveness without affecting surveillance coverage. We tested this hypothesis by choosing four potential forest and urban lepidopteran pest species that are present in Europe but not yet in New Zealand and many other countries. We deployed traps in central and southern Europe with single lures or all possible species combinations (up to four lures per trap). There was only limited interference, apparently due to trap saturation, but no evidence for interspecific repellency among lures for gypsy moth, Lymantria dispar, fall webworm, Hyphantria cunea, pine processionary moth, Thaumetopoea pityocampa, and pine shoot moth, Rhyacionia buoliana. To assess what factors may be important in species compatibility/suitability for multiple-species trapping, we combined our results with those of previous studies conducted by the United States Department of Agriculture. For 75 combinations of pheromones, tested singly or in combination, 19 % showed no effect on trap catch for any of the species tested. In the other cases, either one or both species showed a reduction in trap catch. However, few lure combinations caused complete or nearly complete suppression. For most combinations, catches were still sufficiently high for detection purposes. Species from the same superfamily exhibited more interference than more distantly related species. Together, these results suggest that there are opportunities to improve the range of exotic pests under surveillance, at little additional cost, by multiple-species trapping for which compatibility has been demonstrated.


Subject(s)
Insect Control , Lepidoptera/drug effects , Pheromones/pharmacology , Animals , Europe , Introduced Species , Species Specificity , Trees
11.
Ecol Evol ; 3(15): 5098-108, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24455139

ABSTRACT

Allochrony that is reproductive isolation by time may further lead to divergence of reproductive adaptive traits in response to different environmental pressures over time. A unique "summer" population of the pine processionary moth Thaumetopoea pityocampa, reproductively isolated from the typical winter populations by allochronic differentiation, is here analyzed. This allochronically shifted population reproduces in the spring and develops in the summer, whereas "winter" populations reproduce in the late summer and have winter larval development. Both summer and winter populations coexist in the same pine stands, yet they face different climatic pressures as their active stages are present in different seasons. The occurrence of significant differences between the reproductive traits of the summer population and the typical winter populations (either sympatric or allopatric) is thus hypothesized. Female fecundity, egg size, egg covering, and egg parasitism were analyzed showing that the egg load was lower and that egg size was higher in the summer population than in all the studied winter populations. The scales that cover the egg batches of T. pityocampa differed significantly between populations in shape and color, resulting in a looser and darker covering in the summer population. The single specialist egg parasitoid species of this moth was almost missing in the summer population, and the overall parasitism rates were lower than in the winter population. Results suggest the occurrence of phenotypic differentiation between the summer population and the typical T. pityocampa winter populations for the life-history traits studied. This work provides an insight into how ecological divergence may follow the process of allochronic reproductive isolation.

12.
J Environ Manage ; 90(2): 683-91, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18336989

ABSTRACT

This paper assesses the private and social profitability of current strategies for managing processionary moth (Thaumetopoea pityocampa) in Portuguese pine forests, looking at economic and environmental costs and benefits. Costs include the expenses for forest treatment and the social costs of threats to human health (dermatitis amongst others); benefits are assessed in terms of both revenue and social benefits such as carbon fixation and recreation. The evaluation was done using Cost Benefit Analysis (CBA) as an analytical framework. While this tool is currently applied to forest and environmental assessment and specific applications to pest management strategies are to be found in agricultural economics, rather few attempts have been made in the field of forest pest management. In order to assess and compare with--without options, a case-study was analysed for the Setúbal Peninsula, south of Lisbon, an area where extensive stands of maritime pine (Pinus pinaster) grow. The exercise has shown that CBA can be a valuable tool for assessing the economic and social profitability of pest management. The results demonstrate that the loss of revenues in the no-management option is not sufficient to make pest management profitable for private forest owners in the short-term. Conversely, a social profit is gained as pest management minimizes health risks for humans and avoids possible recreational losses.


Subject(s)
Moths , Pest Control/economics , Pinus , Trees , Animals , Cost-Benefit Analysis , Portugal
13.
Proc Biol Sci ; 274(1612): 935-41, 2007 Apr 07.
Article in English | MEDLINE | ID: mdl-17251101

ABSTRACT

Allochronic speciation refers to a mode of sympatric speciation in which the differentiation of populations is primarily due to a phenological shift without habitat or host change. However, it has been so far rarely documented. The present paper reports on a plausible case of allochronic differentiation between sympatric populations of the pine processionary moth (PPM), Thaumetopoea pityocampa. The PPM is a Mediterranean insect with winter larval development. A phenologically atypical population with early adult activity and summer larval development was detected 10 years ago in Portugal. Mitochondrial and nuclear sequences strongly suggest that the 'summer' individuals are closely related to the sympatric winter population, while microsatellite data show a reduction in allelic richness, a distortion of allelic frequencies and significant genetic differentiation. Moreover, monitoring of adult flights suggests that reproductive activity does not overlap between the summer and winter populations. We postulate that the summer population appeared after a sudden phenological shift of some individuals of the sympatric winter population, leading to a founder effect and complete reproductive isolation. Given that the individuals showing this new phenology are subject to different selection pressures, the observed allochronic differentiation may rapidly lead to deeper divergence.


Subject(s)
Genetic Speciation , Genetics, Population , Moths/genetics , Phylogeny , Seasons , Animals , Cluster Analysis , DNA Primers , DNA, Mitochondrial/genetics , Flight, Animal/physiology , Founder Effect , France , Microsatellite Repeats/genetics , Models, Genetic , Moths/growth & development , Portugal , Reproduction/physiology , Sequence Analysis, DNA , Spain , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...