Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 115(6): 1716-1728, 2023 09.
Article in English | MEDLINE | ID: mdl-37337787

ABSTRACT

Several commercially important secondary metabolites are produced and accumulated in high amounts by glandular trichomes, giving the prospect of using them as metabolic cell factories. Due to extremely high metabolic fluxes through glandular trichomes, previous research focused on how such flows are achieved. The question regarding their bioenergetics became even more interesting with the discovery of photosynthetic activity in some glandular trichomes. Despite recent advances, how primary metabolism contributes to the high metabolic fluxes in glandular trichomes is still not fully elucidated. Using computational methods and available multi-omics data, we first developed a quantitative framework to investigate the possible role of photosynthetic energy supply in terpenoid production and next tested experimentally the simulation-driven hypothesis. With this work, we provide the first reconstruction of specialised metabolism in Type-VI photosynthetic glandular trichomes of Solanum lycopersicum. Our model predicted that increasing light intensities results in a shift of carbon partitioning from catabolic to anabolic reactions driven by the energy availability of the cell. Moreover, we show the benefit of shifting between isoprenoid pathways under different light regimes, leading to a production of different classes of terpenes. Our computational predictions were confirmed in vivo, demonstrating a significant increase in production of monoterpenoids while the sesquiterpenes remained unchanged under higher light intensities. The outcomes of this research provide quantitative measures to assess the beneficial role of chloroplast in glandular trichomes for enhanced production of secondary metabolites and can guide the design of new experiments that aim at modulating terpenoid production.


Subject(s)
Sesquiterpenes , Trichomes , Trichomes/metabolism , Carbon/metabolism , Terpenes/metabolism , Sesquiterpenes/metabolism , Monoterpenes/metabolism
2.
Methods Enzymol ; 671: 31-62, 2022.
Article in English | MEDLINE | ID: mdl-35878984

ABSTRACT

Cassava is a staple food used in many countries around the world, despite deficiencies in micronutrients such as provitamin A carotenoids. Unfortunately, improvement of the cassava nutritional content by use of conventional breeding is slow and difficult. Therefore, there is an urgent need to develop and standardize protocols using biotechnological tools to improve cassava. The Alliance of Biodiversity International and the International Center for Tropical Agriculture (CIAT) have worked on cassava genetic transformation over the last 30 years. Here, we describe, step by step, the procedures used for genetic transformation of cassava variety TMS60444, to improve carotenoids and other traits. This protocol includes stock setup, reagents, media preparation, materials, and equipment, for the genetic transformation of embryogenic tissues. The main expected output in publishing this protocol is to provide the basis for a reproducible and reliable method to genetically modify and/or gene edit Latin American and Asian cassava varieties.


Subject(s)
Manihot , Biotechnology , Carotenoids , Manihot/genetics , Metabolic Engineering , Plant Breeding
3.
Curr Opin Plant Biol ; 66: 102172, 2022 04.
Article in English | MEDLINE | ID: mdl-35144142

ABSTRACT

Plant specialized metabolites are often synthesized and stored in dedicated morphological structures such as glandular trichomes, resin ducts, or laticifers where they accumulate in large concentrations. How this high productivity is achieved is still elusive, in particular, with respect to the interface between primary and specialized metabolism. Here, we focus on glandular trichomes to survey recent progress in understanding how plant metabolic cell factories manage to balance homeostasis of essential central metabolites while producing large quantities of compounds that constitute a metabolic sink. In particular, we review the role of gene duplications, transcription factors and photosynthesis.


Subject(s)
Photosynthesis , Trichomes , Plants/metabolism , Resource Allocation , Transcription Factors/metabolism , Trichomes/genetics , Trichomes/metabolism
4.
Front Plant Sci ; 10: 673, 2019.
Article in English | MEDLINE | ID: mdl-31191582

ABSTRACT

High genotype-dependent variation in friable embryogenic callus (FEC) induction and subsequent somaclonal variation constitute bottlenecks for the application and scaling of genetic transformation (GT) technology to more farmer- and industry-preferred cassava varieties. The understanding and identification of molecular factors underlying embryogenic development in cassava may help to overcome these constraints. Here, we described the Arabidopsis thaliana LEAFY COTYLEDON (LEC) LEC1 and LEC2 orthologous genes in cassava, designated as MeLEC1 and MeLEC2, respectively. Expression analyses showed that both, MeLEC1 and MeLEC2, are expressed at higher levels in somatic embryogenic (SE) tissues in contrast with differentiated mature tissues. The rapid expression increase of MeLEC genes at early SE induction times strongly suggests that they are involved in the transition from a somatic to an embryonic state, and probably, in the competence acquisition for SE development in cassava. The independent overexpression of the MeLEC genes resulted in different regenerated events with embryogenic characteristics such as MeLEC1OE plants with cotyledon-like leaves and MeLEC2OE plants with somatic-like embryos that emerged over the surface of mature leaves. Transcript increases of other embryo-specific regulating factors were also detected in MeLECOE plants, supporting their mutual interaction in the embryo development coordination. The single overexpression of MeLEC2 was enough to reprogram the vegetative cells and induce direct somatic embryogenesis, which converts this gene into a tool that could improve the recovery of transformed plants of recalcitrant genotypes. The identification of MeLEC genes contributes not only to improve our understanding of SE process in cassava, but also provides viable alternatives to optimize GT and advance in gene editing in this crop, through the development of genotype-independent protocols.

5.
In Vitro Cell Dev Biol Plant ; 52(5): 461-478, 2016.
Article in English | MEDLINE | ID: mdl-27818605

ABSTRACT

The importance of cassava as the fourth largest source of calories in the world requires that contributions of biotechnology to improving this crop, advances and current challenges, be periodically reviewed. Plant biotechnology offers a wide range of opportunities that can help cassava become a better crop for a constantly changing world. We therefore review the state of knowledge on the current use of biotechnology applied to cassava cultivars and its implications for breeding the crop into the future. The history of the development of the first transgenic cassava plant serves as the basis to explore molecular aspects of somatic embryogenesis and friable embryogenic callus production. We analyze complex plant-pathogen interactions to profit from such knowledge to help cassava fight bacterial diseases and look at candidate genes possibly involved in resistance to viruses and whiteflies-the two most important traits of cassava. The review also covers the analyses of main achievements in transgenic-mediated nutritional improvement and mass production of healthy plants by tissue culture and synthetic seeds. Finally, the perspectives of using genome editing and the challenges associated to climate change for further improving the crop are discussed. During the last 30 yr, great advances have been made in cassava using biotechnology, but they need to scale out of the proof of concept to the fields of cassava growers.

SELECTION OF CITATIONS
SEARCH DETAIL
...