Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Molecules ; 26(1)2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33401638

ABSTRACT

In this review, the experimental set-up and functional characteristics of single-wavelength and broad-band femtosecond upconversion spectrophotofluorometers developed in our laboratory are described. We discuss applications of this technique to biophysical problems, such as ultrafast fluorescence quenching and solvation dynamics of tryptophan, peptides, proteins, reduced nicotinamide adenine dinucleotide (NADH), and nucleic acids. In the tryptophan dynamics field, especially for proteins, two types of solvation dynamics on different time scales have been well explored: ~1 ps for bulk water, and tens of picoseconds for "biological water", a term that combines effects of water and macromolecule dynamics. In addition, some proteins also show quasi-static self-quenching (QSSQ) phenomena. Interestingly, in our more recent work, we also find that similar mixtures of quenching and solvation dynamics occur for the metabolic cofactor NADH. In this review, we add a brief overview of the emerging development of fluorescent RNA aptamers and their potential application to live cell imaging, while noting how ultrafast measurement may speed their optimization.


Subject(s)
Fluorescence , Nucleic Acids/chemistry , Peptides/chemistry , Proteins/chemistry , Biophysics , Spectrometry, Fluorescence , Tryptophan/chemistry
2.
J Phys Chem B ; 124(31): 6721-6727, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32660250

ABSTRACT

The fluorescence of dinucleotide NADH has been exploited for decades to determine the redox state of cells and tissues in vivo and in vitro. Particularly, nanosecond (ns) fluorescence lifetime imaging microscopy (FLIM) of NADH (in free vs bound forms) has recently offered a label-free readout of mitochondrial function and allowed the different "pools" of NADH to be distinguished in living cells. In this study, the ultrafast fluorescence dynamics of NADH-dehydrogenase (MDH/LDH) complexes have been investigated by using both a femtosecond (fs) upconversion spectrophotofluorometer and a picosecond (ps) time-correlated single photon counting (TCSPC) apparatus. With these enhanced time-resolved tools, a few-picosecond decay process with a signatory spectrum was indeed found for bound NADH, and it can best be ascribed to the solvent relaxation originating in "bulk water". However, it is quite unlike our previously discovered ultrafast "dark" component (∼26 ps) that is prominent in free NADH (Chemical Physics Letters 2019, 726, 18-21). For these two critical protein-bound NADH exemplars, the decay transients lack the ultrafast quenching that creates the "dark" subpopulation of free NADH. Therefore, we infer that the apparent ratio of free to bound NADH recovered by ordinary (>50 ps) FLIM methods may be low, since the "dark" molecule subpopulation (lifetime too short for conventional FLIM), which effectively hides about a quarter of free molecules, is not present in the dehydrogenase-bound state.


Subject(s)
Dinucleoside Phosphates , NAD , Binding Sites , Microscopy, Fluorescence , Oxidoreductases
3.
J Phys Chem B ; 119(11): 4230-9, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25710196

ABSTRACT

Time dependent fluorescence Stokes (emission wavelength) shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many fluorescence probes, both the efficiency and the wavelength of Trp fluorescence in proteins are highly sensitive to microenvironment, and Stokes shifts can be dominated by the well-known heterogeneous nature of protein structure, leading to what we call pseudo-TDFSS: shifts that arise from differential decay rates of subpopulations. Here we emphasize a novel, general method that obviates pseudo-TDFSS by replacing Trp by 5-fluorotryptophan (5Ftrp), a fluorescent analogue with higher ionization potential and greatly suppressed electron-transfer quenching. 5FTrp slows and suppresses pseudo-TDFSS, thereby providing a clearer view of genuine relaxation caused by solvent and protein response. This procedure is applied to the sweet-tasting protein monellin which has uniquely been the subject of ultrafast studies in two different laboratories (Peon, J.; et al. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10964; Xu, J.; et al. J. Am. Chem. Soc. 2006, 128, 1214) that led to disparate interpretations of a 20 ps transient. They differed because of the pseudo-TDFSS present. The current study exploiting special properties of 5FTrp strongly supports the conclusion that both lifetime heterogeneity-based TDFSS and environment relaxation-based TDFSS are present in monellin and 5FTrp-monellin. The original experiments on monellin were most likely dominated by pseudo-TDFSS, whereas, in the present investigation of 5FTrp-monellin, the TDFSS is dominated by relaxation and any residual pseudo-TDFSS is overwhelmed and/or slowed to irrelevance.


Subject(s)
Plant Proteins/chemistry , Plant Proteins/metabolism , Tryptophan/analogs & derivatives , Water/chemistry , Kinetics , Quantum Theory , Spectrometry, Fluorescence , Tryptophan/chemistry
4.
Chem Phys ; 4222013 Aug 30.
Article in English | MEDLINE | ID: mdl-24273370

ABSTRACT

Proteins involved in functions such as electron transfer or ion transport must be capable of stabilizing transient charged species on time scales ranging from picoseconds to microseconds. We study the influenza A M2 proton channel, containing a tryptophan residue that serves as an essential part of the proton conduction pathway. We induce a transition dipole in tryptophan by photoexcitation, and then probe the dielectric stabilization of its excited state. The magnitude of the stabilization over this time regime was larger than that generally found for tryptophan in membrane or protein environments. M2 achieves a water-like stabilization over a 25 nanosecond time scale, slower than that of bulk water, but sufficiently rapid to contribute to stabilization of charge as protons diffuse through the channel. These measurements should stimulate future MD studies to clarify the role of sidechain versus non-bulk water in defining the process of relaxation.

6.
J Phys Chem B ; 114(34): 11323-37, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-20701310

ABSTRACT

How a biological system responds to a charge shift is a challenging question directly relevant to biological function. Time-resolved fluorescence of a tryptophan residue reflects protein and solvent response to the difference in pi-electron density between the excited and the ground state. In this study we use molecular dynamics to calculate the time-dependent spectral shift (TDSS) in the fluorescence of Trp-43 in GB1 protein. A new computational method for separating solvent, protein, and fluorophore contributions to TDSS is applied to 100 nonequilibrium trajectories for GB1 in TIP3P water. The results support several nontrivial conclusions. Both longitudinal and transverse relaxation modes of bulk solvent contribute to the TDSS in proteins. All relaxation components slower than the transverse relaxation of bulk solvent have significant contributions from both protein and solvent, with a negative correlation between them. Five exponential terms in the TDSS of GB1 are well separated by their relaxation times. A 0.036 ps term is due to both solvent (60%) and protein (40%). Two exponential terms represent longitudinal (tau(L) approximately = 0.4 ps) and transverse (tau(D) approximately = 5.6 ps) relaxation modes of TIP3P water. A 131 ps term is attributable to a small change in the tertiary structure, with the alpha-helix moving 0.2 A away from the beta-strand containing Trp-43. A 2580 ps term is due to the change in the conformation of the Glu-42 side chain that brings its carboxyl group close to the positively charged end of the excited fluorophore. Interestingly, water cancels 60% of the TDSS resulting from this conformational change.


Subject(s)
Receptors, GABA-B/chemistry , Tryptophan/chemistry , Molecular Dynamics Simulation , Protein Structure, Tertiary , Solvents/chemistry , Spectrometry, Fluorescence , Time Factors
7.
J Am Chem Soc ; 131(46): 16751-7, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19919143

ABSTRACT

The eye lens Crystallin proteins are subject to UV irradiation throughout life, and the photochemistry of damage proceeds through the excited state; thus, their tryptophan (Trp) fluorescence lifetimes are physiologically important properties. The time-resolved fluorescence spectra of single Trps in human gammaD- and gammaS-Crystallins have been measured with both an upconversion spectrophotofluorometer on the 300 fs to 100 ps time scale, and a time correlated single photon counting apparatus on the 100 ps to 10 ns time scale, respectively. Three Trps in each wild type protein were replaced by phenylalanine, leading to single-Trp mutants: W68-only and W156-only of HgammaD- and W72-only and W162-only of HgammaS-Crystallin. These proteins exhibit similar ultrafast signatures: positive definite decay associated spectra (DAS) for 50-65 ps decay constants that indicate dominance of fast, heterogeneous quenching. The quenched population (judged by amplitude) of this DAS differs among mutants. Trps 68, 156 in human gammaD- and Trp72 in human gammaS-Crystallin are buried, but water can reach amide oxygen and ring HE1 atoms through narrow channels. QM-MM simulations of quenching by electron transfer predict heterogeneous decay times from 50-500 ps that agree with our experimental results. Further analysis of apparent radiative lifetimes allow us to deduce that substantial subpopulations of Trp are fully quenched in even faster (sub-300 fs) processes for several of the mutants. The quenching of Trp fluorescence of human gammaD- and gammaS-Crystallin may protect them from ambient light induced photo damage.


Subject(s)
Tryptophan/chemistry , gamma-Crystallins/chemistry , gamma-Crystallins/radiation effects , Humans , Phenylalanine/chemistry , Phenylalanine/genetics , Spectrometry, Fluorescence , Tryptophan/genetics , Ultraviolet Rays , gamma-Crystallins/genetics
9.
10.
Biochemistry ; 47(40): 10705-21, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18795792

ABSTRACT

Human gammaD-crystallin (HgammaD-Crys) is a two-domain, beta-sheet eye lens protein found in the lens nucleus. Its long-term solubility and stability are important to maintain lens transparency throughout life. HgammaD-Crys has four highly conserved buried tryptophans (Trps), with two in each of the homologous beta-sheet domains. In situ, these Trps will be absorbing ambient UV radiation that reaches the lens. The dispersal of the excited-state energy to avoid covalent damage is likely to be physiologically relevant for the lens crystallins. Trp fluorescence is efficiently quenched in native HgammaD-Crys. Previous steady-state fluorescence measurements provide strong evidence for energy transfer from Trp42 to Trp68 in the N-terminal domain and from Trp130 to Trp156 in the C-terminal domain [Chen, J., et al. (2006) Biochemistry 45, 11552-11563]. Hybrid quantum mechanical-molecular mechanical (QM-MM) simulations indicated that the fluorescence of Trp68 and Trp156 is quenched by fast electron transfer to the amide backbone. Here we report additional information obtained using time-resolved fluorescence spectroscopy. In the single-Trp-containing proteins (Trp42-only, Trp68-only, Trp130-only, and Trp156-only), the highly quenched Trp68 and Trp156 have very short lifetimes, tau approximately 0.1 ns, whereas the moderately fluorescent Trp42 and Trp130 have longer lifetimes, tau approximately 3 ns. In the presence of the energy acceptor (Trp68 or Trp156), the lifetime of the energy donor (Trp42 or Trp130) decreased from approximately 3 to approximately 1 ns. The intradomain energy transfer efficiency is 56% in the N-terminal domain and is 71% in the C-terminal domain. The experimental values of energy transfer efficiency are in good agreement with those calculated theoretically. The absence of a time-dependent red shift in the time-resolved emission spectra of Trp130 proves that its local environment is very rigid. Time-resolved fluorescence anisotropy measurements with the single-Trp-containing proteins, Trp42-only and Trp130-only, indicate that the protein rotates as a rigid body and no segmental motion is detected. A combination of energy transfer with electron transfer results in short excited-state lifetimes of all Trps, which, together with the high rigidity of the protein matrix around Trps, could protect HgammaD-Crys from excited-state reactions causing permanent covalent damage.


Subject(s)
Spectrometry, Fluorescence/methods , Tryptophan/chemistry , gamma-Crystallins/chemistry , Humans , Protein Structure, Secondary
11.
Biochem Soc Trans ; 36(Pt 2): 157-66, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18363556

ABSTRACT

Cell-fate decisions in metazoans are frequently guided by the Notch signalling pathway. Notch signalling is orchestrated by a type-1 transmembrane protein, which, upon interacting with extracellular ligands, is proteolytically cleaved to liberate a large intracellular domain [NICD (Notch intracellular domain)]. NICD enters the nucleus where it binds the transcription factor CSL (CBF1/suppressor of Hairless/Lag-1) and activates transcription of Notch-responsive genes. In the present paper, the interaction between the Drosophila NICD and CSL will be examined. This interaction involves two separate binding regions on NICD: the N-terminal tip of NICD {the RAM [RBP-Jkappa (recombination signal-binding protein 1 for Jkappa)-associated molecule] region} and an ankyrin domain approximately 100 residues away. CD studies show that the RAM region of NICD lacks alpha-helical and beta-sheet secondary structure, and also lacks rigid tertiary structure. Fluorescence studies show that the tryptophan residues in RAM are highly solvated and are quenched by solvent. To assess the impact of this apparent disorder on the bivalent binding of NICD to CSL, we modelled the region between the RAM and ANK (ankyrin repeat)-binding regions using polymer statistics. A WLC (wormlike chain) model shows that the most probable sequence separation between the two binding regions is approximately 50 A (1 A=0.1 nm), matching the separation between these two sites in the complex. The WLC model predicts a substantial enhancement of ANK occupancy via effective concentration, and suggests that the linker length between the two binding regions is optimal for bivalent interaction.


Subject(s)
Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Receptors, Notch/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/chemistry , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Receptors, Notch/chemistry , Receptors, Notch/genetics , Sequence Alignment , Signal Transduction/physiology , Thermodynamics , Transcription Factors/chemistry
13.
J Phys Chem B ; 110(51): 26292-302, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181288

ABSTRACT

The B1 domain of Streptococcal protein G (GB1) is a small, thermostable protein containing a single tryptophan residue. We recorded time-resolved fluorescence of the wild-type GB1 and its 5-fluorotryptophan (5FTrp) variant at more than 30 emission wavelengths between 300 and 470 nm. The time-resolved emission spectra reveal no signs of heterogeneity, but show a time-dependent red shift characteristic of microscopic dielectric relaxation. This is true for both 5FTrp and unmodified Trp in GB1. The time-dependent red shifts in the fluorescence of 5FTrp and unmodified Trp are essentially identical, confirming that the shift is caused by the relaxation of the protein matrix rather than by the fluorophore itself. The total amplitude (but not the rate) of the time-dependent red shift depends on the fluorophore, specifically, on the magnitude of the vector difference between its excited state and ground state electric dipole moments; for 5FTrp this is estimated to be about 88% of that for the unmodified Trp. The decay of the excited state fluorophore population is not monoexponential for either fluorophore; however, the deviation from the monoexponential decay law is larger in the case of unmodified Trp. The relaxation dynamics of GB1 was found to be considerably faster than that of other proteins studied previously, consistent with the small size, tightly packed core, and high thermodynamic stability of GB1.


Subject(s)
Tryptophan/analogs & derivatives , Tryptophan/chemistry , Nanotechnology , Recombinant Proteins/chemistry , Spectrometry, Fluorescence
14.
J Am Chem Soc ; 128(4): 1214-21, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16433538

ABSTRACT

The complete time-resolved fluorescence of tryptophan in the proteins monellin and IIA(Glc) has been investigated, using both an upconversion spectrophotofluorometer with 150 fs time resolution and a time-correlated single photon counting apparatus on the 100 ps to 20 ns time scale. In monellin, the fluorescence decay displays multiexponential character with decay times of 1.2 and 16 ps, and 0.6, 2.2, and 4.2 ns. In contrast, IIA(Glc) exhibited no component between 1.2 ps and 0.1 ns. For monellin, surprisingly, the 16 ps fluorescence component was found to have positive amplitude even at longer wavelengths (e.g., 400 nm). In conjunction with quantum mechanical simulation of tryptophan in monellin, the experimental decay associated spectra (DAS) and time-resolved emission spectra (TRES) indicate that this fluorescence decay time should be ascribed to a highly quenched conformer. Recent models (Peon, J.; et al. Proc. Natl.Acad. Sci. U.S.A. 2002, 99, 10964) invoked exchange-coupled relaxation of protein water to explain the fluorescence decay of monellin.


Subject(s)
Escherichia coli Proteins/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Plant Proteins/chemistry , Tryptophan/chemistry , Kinetics , Spectrometry, Fluorescence/methods
15.
Biochemistry ; 44(31): 10501-9, 2005 Aug 09.
Article in English | MEDLINE | ID: mdl-16060659

ABSTRACT

PCAF and GCN5 are histone acetyltransferase (HAT) paralogs which play roles in the remodeling of chromatin in health and disease. Previously, a conformationally flexible loop in the catalytic domain had been observed in the X-ray structures of GCN5 in different liganded states. Here, the conformation and dynamics of this PCAF/GCN5 alpha5-beta6 loop was investigated in solution using tryptophan fluorescence. A mutant human PCAF HAT domain (PCAF(Wloop)) was created in which the natural tryptophan (Trp-514) remote from the alpha5-beta6 loop was replaced with tyrosine and a glutamate within the loop (Glu-641) was substituted with tryptophan. This PCAF(Wloop) protein exhibited catalytic parameters within 3-fold of those of the wild-type PCAF catalytic domain, suggesting that the loop mutation was not deleterious for HAT activity. While saturating CoASH induced a 30% quenching of Trp fluorescence in PCAF(Wloop), binding of the high-affinity bisubstrate analogue H3-CoA-20 led to a 2-fold fluorescence increase. These different effects correlate with the different alpha5-beta6 loop conformations seen previously in X-ray structures. On the basis of stopped-flow fluorescence studies, binding of H3-CoA-20 to PCAF(Wloop) proceeds via a rapid association step followed by a slower conformational change involving loop movement. Time-resolved fluorescence measurements support a model in which the alpha5-beta6 loop in the H3-CoA-20-PCAF(Wloop) complex exists in a narrower ensemble of conformations compared to free PCAF(Wloop). The relevance of loop dynamics to PCAF/GCN5 catalysis and substrate specificity are discussed.


Subject(s)
Catalytic Domain , Cell Cycle Proteins/chemistry , Histone Acetyltransferases/chemistry , Transcription Factors/chemistry , Animals , Catalytic Domain/genetics , Cell Cycle Proteins/genetics , Coenzyme A/chemistry , Histone Acetyltransferases/genetics , Humans , Kinetics , Mutagenesis, Site-Directed , Nanotechnology , Protein Conformation , Sequence Homology, Amino Acid , Spectrometry, Fluorescence , Substrate Specificity/genetics , Tetrahymena , Transcription Factors/genetics , Tryptophan/genetics , p300-CBP Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...