Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 15(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38398989

ABSTRACT

In this work, we present the area-selective growth of zinc oxide nanowire (NW) arrays on patterned surfaces of a silicon (Si) substrate for a piezoelectric nanogenerator (PENG). ZnO NW arrays were selectively grown on patterned surfaces of a Si substrate using a devised microelectromechanical system (MEMS)-compatible chemical bath deposition (CBD) method. The fabricated devices measured a maximum peak output voltage of ~7.9 mV when a mass of 91.5 g was repeatedly manually placed on them. Finite element modeling (FEM) of a single NW using COMSOL Multiphysics at an applied axial force of 0.9 nN, which corresponded to the experimental condition, resulted in a voltage potential of -6.5 mV. The process repeated with the same pattern design using a layer of SU-8 polymer on the NWs yielded a much higher maximum peak output voltage of ~21.6 mV and a corresponding peak power density of 0.22 µW/cm3, independent of the size of the NW array. The mean values of the measured output voltage and FEM showed good agreement and a nearly linear dependence on the applied force on a 3 × 3 µm2 NW array area in the range of 20 to 90 nN.

2.
Sensors (Basel) ; 23(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850600

ABSTRACT

We addressed the coating 5 mm-long cantilever microprobes with a viscoelastic material, which was intended to considerably extend the range of the traverse speed during the measurements of the 3D surface topography by damping contact-induced oscillations. The damping material was composed of epoxy glue, isopropyl alcohol, and glycerol, and its deposition onto the cantilever is described, as well as the tests of the completed cantilevers under free-oscillating conditions and in contact during scanning on a rough surface. The amplitude and phase of the cantilever's fundamental out-of-plane oscillation mode was investigated vs. the damping layer thickness, which was set via repeated coating steps. The resonance frequency and quality factor decreased with the increasing thickness of the damping layer for both the free-oscillating and in-contact scanning operation mode, as expected from viscoelastic theory. A very low storage modulus of E'≈100kPa, a loss modulus of E″≈434kPa, and a density of ρ≈1.2gcm-3 were yielded for the damping composite. Almost critical damping was observed with an approximately 130 µm-thick damping layer in the free-oscillating case, which was effective at suppressing the ringing behavior during the high-speed in-contact probing of the rough surface topography.

3.
Sensors (Basel) ; 22(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35162043

ABSTRACT

Given their superior dynamics, microprobes represent promising probe candidates for high-speed roughness measurement applications. Their disadvantage, however, lies in the fact that the volume of the microprobe's silicon tip decreases dramatically during roughness measurement, and the unstable tip geometry leads to an increase in measurement uncertainty. To investigate the factors that influence tip geometry variation during roughness measurement, a rectangular-shaped tip characterizer was employed to characterize the tip geometry, and a method for reconstructing the tip geometry from the measured profile was introduced. Experiments were conducted to explore the ways in which the tip geometry is influenced by tip wear, probing force, and the relative movement of the tip with respect to the sample. The results indicate that tip fracture and not tip wear is the main reason for tip volume loss, and that the lateral dynamic load on the tip during scanning mode is responsible for more tip fracture than are other factors.

4.
Sensors (Basel) ; 21(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34502846

ABSTRACT

Long slender piezoresistive silicon microprobes are a new type of sensor for measurement of surface roughness. Their advantage is the ability to measure at speeds of up to 15 mm/s, which is much faster than conventional stylus probes. The drawbacks are their small measurement range and tendency to break easily when deflected by more than the allowed range of 1 mm. In this article, previously developed microprobes were tested in the laboratory to evaluate their metrological properties, then tested under industrial conditions. There are several industrial measurement applications in which microprobes are useful. Measurement of the roughness of paper machine rolls was selected for testing in this study. The integration of a microprobe into an existing roll measurement device is presented together with the measurement results. The results are promising, indicating that measurements using a microprobe can give useful data on the grinding process.


Subject(s)
Silicon
5.
Sensors (Basel) ; 21(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668104

ABSTRACT

High-speed tactile roughness measurements set high demand on the trackability of the stylus probe. Because of the features of low mass, low probing force, and high signal linearity, the piezoresistive silicon microprobe is a hopeful candidate for high-speed roughness measurements. This paper investigates the trackability of these microprobes through building a theoretical dynamic model, measuring their resonant response, and performing tip-flight experiments on surfaces with sharp variations. Two microprobes are investigated and compared: one with an integrated silicon tip and one with a diamond tip glued to the end of the cantilever. The result indicates that the microprobe with the silicon tip has high trackability for measurements up to traverse speeds of 10 mm/s, while the resonant response of the microprobe with diamond tip needs to be improved for the application in high-speed topography measurements.

6.
J Mass Spectrom ; 55(10): e4615, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32881207

ABSTRACT

Stable isotope compositions of ancient halite fluid inclusions have been recognized to be valuable tools for reconstructing past environments. Nevertheless, in order to better understand the genesis of halite deposits, it could be of great interest to combine both δ2 H and δ18 O measurements of the water trapped as inclusions in the defects of the mineral lattice. We developed a method combining off-axis integrated cavity output spectroscopy (OA-ICOS) connected on line with a modified elemental analyzer (EA-OA-ICOS) to perform those measurements. The first step was to test the method with synthetic halite crystals precipitated in the laboratory from isotopically calibrated waters. Water isotopic signatures have been measured with conventional techniques, equilibration for δ18 O and chromium reduction for δ2 H. Then, we modified and optimized a conventional EA to connect it online with an OA-ICOS instrument for H2 O measurements. The technique is first evaluated for calibrated free water samples. The technique is also evaluated for salt matrix effect, accuracy, and linearity for both isotopic signatures. Then, the technique is used to measure simultaneously δ2 H and δ18 O values of halite water inclusions precipitated from the evaporation experiments. Data generated with this new technique appeared to be comparable with those inferred from prior off-line technique studies. The advantages offered by the OA-ICOS technique are the simultaneous acquisition of both isotopic ratios and the substantial reduction of data acquisition time and sample aliquot size. Natural halite samples have been analyzed with this method. Natural halite samples as old as Precambrian have also been analyzed with this method.

7.
Sensors (Basel) ; 19(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635250

ABSTRACT

Nanomechanical characterization of vertically aligned micro- and nanopillars plays an important role in quality control of pillar-based sensors and devices. A microelectromechanical system based scanning probe microscope (MEMS-SPM) has been developed for quantitative measurement of the bending stiffness of micro- and nanopillars with high aspect ratios. The MEMS-SPM exhibits large in-plane displacement with subnanometric resolution and medium probing force beyond 100 micro-Newtons. A proof-of-principle experimental setup using an MEMS-SPM prototype has been built to experimentally determine the in-plane bending stiffness of silicon nanopillars with an aspect ratio higher than 10. Comparison between the experimental results and the analytical and FEM evaluation has been demonstrated. Measurement uncertainty analysis indicates that this nano-bending system is able to determine the pillar bending stiffness with an uncertainty better than 5%, provided that the pillars' stiffness is close to the suspending stiffness of the MEMS-SPM. The MEMS-SPM measurement setup is capable of on-chip quantitative nanomechanical characterization of pillar-like nano-objects fabricated out of different materials.

8.
Sensors (Basel) ; 19(6)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30909410

ABSTRACT

During the past decade, piezo-resistive cantilever type silicon microprobes for high-speed roughness measurements inside high-aspect-ratio microstructures, like injection nozzles or critical gas nozzles have been developed. This article summarizes their metrological properties for fast roughness and shape measurements including noise, damping, tip form, tip wear, and probing forces and presents the first results on the measurement of mechanical surface parameters. Due to the small mass of the cantilever microprobes, roughness measurements at very high traverse speeds up to 15 mm/s are possible. At these high scanning speeds, considerable wear of the integrated silicon tips was observed in the past. In this paper, a new tip-testing artefact with rectangular grooves of different width was used to measure this wear and to measure the tip shape, which is needed for morphological filtering of the measured profiles and, thus, for accurate form measurements. To reduce tip wear, the integrated silicon tips were replaced by low-wear spherical diamond tips of a 2 µm radius. Currently, a compact microprobe device with an integrated feed-unit is being developed for high-speed roughness measurements on manufacturing machines. First measurements on sinusoidal artefacts were carried out successfully. Moreover, the first measurements of the elastic modulus of a polymer surface applying the contact resonance measurement principle are presented, which indicates the high potential of these microprobes for simultaneous high-speed roughness and mechanical parameter measurements.

9.
Sci Rep ; 9(1): 598, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679565

ABSTRACT

The fibrous calcite layer of modern brachiopod shells is a hybrid composite material and forms a substantial part of the hard tissue. We investigated how cells of the outer mantle epithelium (OME) secrete calcite material and generate the characteristic fibre morphology and composite microstructure of the shell. We employed AFM, FE-SEM, and TEM imaging of embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze substituted samples. Calcite fibres are secreted by outer mantle epithelium (OME) cells. Biometric analysis of TEM micrographs indicates that about 50% of these cells are attached via hemidesmosomes to an extracellular organic membrane present at the proximal, convex surface of the fibres. At these sites, mineral secretion is not active. Instead, ion transport from OME cells to developing fibres occurs at regions of closest contact between cells and fibres, however only at sites where the extracellular membrane at the proximal fibre surface is not developed yet. Fibre formation requires the cooperation of several adjacent OME cells. It is a spatially and temporally changing process comprising of detachment of OME cells from the extracellular organic membrane, mineral secretion at detachment sites, termination of secretion with formation of the extracellular organic membrane, and attachment of cells via hemidesmosomes to this membrane.


Subject(s)
Animal Shells/chemistry , Calcium Carbonate/chemistry , Invertebrates/metabolism , Animal Shells/ultrastructure , Animals , Calcium Carbonate/metabolism , Desmosomes/metabolism , Epithelium/metabolism , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
10.
J Mass Spectrom ; 54(4): 342-350, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30610763

ABSTRACT

We demonstrate an improved method based on continuous-flow elemental analyser pyrolysis isotopic ratio mass spectrometry (CF-EA-PY-IRMS) to measure the 2 H/1 H ratios of water trapped in halite crystals. Two challenges to overcome are the low hydrogen concentration of samples (10-50 µmol H2 ·g-1 ) and the high chloride concentration released when reacting halite in an elemental analyser. We describe an optimization procedure for determining the 2 H/1 H ratio of this trapped water with an acceptable accuracy. This technique involves the use of a high-temperature Cr reactor to quantitatively convert H2 O into H2 . The initial step was performed on halite crystals precipitated from a water reservoir where 2 H/1 H ratios were monitored from its initial stage until the end of evaporation. The 2 H/1 H isotopic analyses were automated online in continuous-flow mode. Precision of the method was determined for those "synthetic" samples with hydrogen concentrations ranging from 0.2 to 0.5 wt%. 2 H/1 H isotopic ratios of evaporating waters bracket the compositions of water inclusions. The formation of fluid inclusions is not instantaneous and records the isotopic signature of the residual waters across a time range during which the isotopic values of the water still evolve. This property explains why the δ2 HVSMOW standard deviation of ±5‰ (2σ) observed for 10-mg aliquots of halite exceeds the instrumental error (about ±1.5‰ 2σ) determined on the basis of IAEA-CH7, NBS 30, and NBS 22 references along with calibrated waters with and without added halite crystals. We also applied this method to Mesoproterozoic (1.4 Ga) and Neoproterozoic (0.8 Ga) halite samples with relatively low hydrogen concentrations (300-1500 ppm). The measured δ2 HVSMOW values for Precambrian waters range from -89‰ to -54‰. We propose that this technique offers a new perspective and great potential for palaeoenvironmental reconstructions based on the 2 H/1 H analyses of water trapped in halite.

11.
Data Brief ; 19: 299-311, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29892650

ABSTRACT

The present data in brief article provides additional data and information to our research article "Micro- and nanostructures reflect the degree of diagenetic alteration in modern and fossil brachiopod shell calcite: a multi-analytical screening approach (CL, FE-SEM, AFM, EBSD)" [1] (Casella et al.). We present fibre morphology, nano- and microstructure, as well as calcite crystal orientations and textures found in pristine, experimentally altered (hydrothermal and thermal), and diagenetically overprinted brachiopod shells. Combination of the screening tools AFM, FE-SEM, and EBSD allows to observe a significant change in microstructural and textural features with an increasing degree of laboratory-based and naturally occurring diagenetic alteration. Amalgamation of neighbouring fibres was observed on the micrometre scale level, whereas progressive decomposition of biopolymers in the shells and fusion of nanoparticulate calcite crystals was detected on the nanometre scale. The presented data in this article and the study described in [1] allows for qualitative information on the degree of diagenetic alteration of fossil archives used for palaeoclimate reconstruction.

12.
Sci Rep ; 8(1): 533, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323253

ABSTRACT

Brachiopod shells are the most widely used geological archive for the reconstruction of the temperature and the oxygen isotope composition of Phanerozoic seawater. However, it is not conclusive whether brachiopods precipitate their shells in thermodynamic equilibrium. In this study, we investigated the potential impact of kinetic controls on the isotope composition of modern brachiopods by measuring the oxygen and clumped isotope compositions of their shells. Our results show that clumped and oxygen isotope compositions depart from thermodynamic equilibrium due to growth rate-induced kinetic effects. These departures are in line with incomplete hydration and hydroxylation of dissolved CO2. These findings imply that the determination of taxon-specific growth rates alongside clumped and bulk oxygen isotope analyses is essential to ensure accurate estimates of past ocean temperatures and seawater oxygen isotope compositions from brachiopods.

13.
J Struct Biol ; 201(3): 221-236, 2018 03.
Article in English | MEDLINE | ID: mdl-29175289

ABSTRACT

Shells of brachiopods are excellent archives for environmental reconstructions in the recent and distant past as their microstructure and geochemistry respond to climate and environmental forcings. We studied the morphology and size of the basic structural unit, the secondary layer fibre, of the shells of several extant brachiopod taxa to derive a model correlating microstructural patterns to environmental conditions. Twenty-one adult specimens of six recent brachiopod species adapted to different environmental conditions, from Antarctica, to New Zealand, to the Mediterranean Sea, were chosen for microstructural analysis using SEM, TEM and EBSD. We conclude that: 1) there is no significant difference in the shape and size of the fibres between ventral and dorsal valves, 2) there is an ontogenetic trend in the shape and size of the fibres, as they become larger, wider, and flatter with increasing age. This indicates that the fibrous layer produced in the later stages of growth, which is recommended by the literature to be the best material for geochemical analyses, has a different morphostructure and probably a lower organic content than that produced earlier in life. In two species of the same genus living in seawater with different temperature and carbonate saturation state, a relationship emerged between the microstructure and environmental conditions. Fibres of the polar Liothyrella uva tend to be smaller, rounder and less convex than those of the temperate Liothyrella neozelanica, suggesting a relationship between microstructural size, shell organic matter content, ambient seawater temperature and calcite saturation state.


Subject(s)
Animal Shells/chemistry , Animal Shells/ultrastructure , Invertebrates/physiology , Analysis of Variance , Animal Shells/anatomy & histology , Animals , Antarctic Regions , Invertebrates/anatomy & histology , Invertebrates/chemistry , Mediterranean Sea , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , New Zealand , Reproducibility of Results , Seawater/chemistry , Temperature
14.
J Struct Biol ; 168(3): 396-408, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19729068

ABSTRACT

We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod Mergerlia truncata and the linguliform brachiopods Discradisca stella and Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of M. truncata show different nanohardness values (from 2.3 to 4.6 GPa) and E-modulus (from 52 to 76 GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods D. stella and L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and E-modulus correlate almost linearly from (H=0.25 GPa, E=2.5 GPa) to (H=2.5 GPa, E=50 GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic D. stella the lamination is also present but less pronounced than for the infaunal L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12 GPa, hardness from 1.7 to 0.5 GPa). Accordingly, the two epibenthic forms, calcitic M. truncata and chitinophosphatic D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.


Subject(s)
Bone and Bones/chemistry , Bone and Bones/physiology , Calcium Carbonate/chemistry , Invertebrates/chemistry , Phosphates/chemistry , Animals , Biomechanical Phenomena , Elastic Modulus/physiology , Hardness
15.
Nature ; 449(7159): 198-201, 2007 Sep 13.
Article in English | MEDLINE | ID: mdl-17851520

ABSTRACT

Atmospheric carbon dioxide concentrations seem to have been several times modern levels during much of the Palaeozoic era (543-248 million years ago), but decreased during the Carboniferous period to concentrations similar to that of today. Given that carbon dioxide is a greenhouse gas, it has been proposed that surface temperatures were significantly higher during the earlier portions of the Palaeozoic era. A reconstruction of tropical sea surface temperatures based on the delta18O of carbonate fossils indicates, however, that the magnitude of temperature variability throughout this period was small, suggesting that global climate may be independent of variations in atmospheric carbon dioxide concentration. Here we present estimates of sea surface temperatures that were obtained from fossil brachiopod and mollusc shells using the 'carbonate clumped isotope' method-an approach that, unlike the delta18O method, does not require independent estimates of the isotopic composition of the Palaeozoic ocean. Our results indicate that tropical sea surface temperatures were significantly higher than today during the Early Silurian period (443-423 Myr ago), when carbon dioxide concentrations are thought to have been relatively high, and were broadly similar to today during the Late Carboniferous period (314-300 Myr ago), when carbon dioxide concentrations are thought to have been similar to the present-day value. Our results are consistent with the proposal that increased atmospheric carbon dioxide concentrations drive or amplify increased global temperatures.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/analysis , Climate , Seawater/analysis , Temperature , Animals , Carbon Isotopes , Carbonates/chemistry , Crystallization , Fossils , Greenhouse Effect , History, Ancient , Oxygen Isotopes , Seawater/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...