Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 406: 131065, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969241

ABSTRACT

Lithium-sulfur batteries are a promising alternative to lithium-ion batteries as they can potentially offer significantly increased capacities and energy densities. The ever-increasing global battery market demonstrates that there will be an ongoing demand for cost effective battery electrode materials. Materials derived from waste products can simultaneously address two of the greatest challenges of today, i.e., waste management and the requirement to develop sustainable materials. In this study, we detail the carbonisation of gelatin from blue shark and chitin from prawns, both of which are currently considered as waste biproducts of the seafood industry. The chemical and physical properties of the resulting carbons are compared through a correlation of results from structural characterisation techniques, including electron imaging, X-ray diffraction, Raman spectroscopy and nitrogen gas adsorption. We investigated the application of the resulting carbons as sulfur-hosting electrode materials for use in lithium-sulfur batteries. Through comprehensive electrochemical characterisation, we demonstrate that value added porous carbons, derived from marine waste are promising electrode materials for lithium-sulfur batteries. Both samples demonstrated impressive capacity retention when galvanostatically cycled at a rate of C/5 for 500 cycles. This study highlights the importance of looking towards waste products as sustainable feeds for battery material production.

2.
ChemSusChem ; : e202301671, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728171

ABSTRACT

Carbon materials are readily available and are essential in energy storage. One of the routes used to enhance their surface area and activity is the decoration of carbons with semiconductors, such as amorphous TiO2, for application in energy storage devices.

3.
Talanta ; 268(Pt 1): 125284, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37866307

ABSTRACT

Soybean is a legume with high technological functionality, commonly used by the food industry as an ingredient in different products. However, soybean is an allergenic food whose undeclared presence in processed foods may represent a public health risk. In this work, it was developed an efficient electrochemical immunosensor, targeting the soybean trypsin inhibitor (Gly m TI) allergen using commercial anti-Gly m TI IgG, aiming at detecting/quantifying minute amounts of soybean in different food formulations. For this purpose, model mixtures of different foods (sausages, cooked-hams, biscuits) were prepared to contain known amounts of soybean protein isolate (100,000-0.1 mg kg-1) and submitted to specific thermal treatments (autoclaving, oven-cooking, baking). The electrochemical immunosensor allowed quantifying down to 0.1 mg kg-1 of soybean in the three food matrices, raw and processed (0.0012 mg of Gly m TI/kg of matrix). Accordingly, the immunosensor is suitable for detecting traces of soybean in raw, processed, and complex foods, thus protecting 99 % of soybean-allergic patients.


Subject(s)
Biosensing Techniques , Glycine max , Humans , Allergens , Point-of-Care Systems , Immunoassay
4.
ACS Omega ; 8(21): 18782-18798, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37273638

ABSTRACT

Waste, in particular, biowaste, can be a valuable source of novel carbon materials. Renewable carbon materials, such as biomass-derived carbons, have gained significant attention recently as potential electrode materials for various electrochemical devices, including batteries and supercapacitors. The importance of renewable carbon materials as electrodes can be attributed to their sustainability, low cost, high purity, high surface area, and tailored properties. Fish waste recovered from the fish processing industry can be used for energy applications and prioritizing the circular economy principles. Herein, a method is proposed to prepare a high surface area biocarbon from glycogen extracted from mussel cooking wastewater. The biocarbon materials were characterized using a Brunauer-Emmett-Teller surface area analyzer to determine the specific surface area and pore size and by scanning electron microscopy coupled with energy-dispersive X-ray analysis, Raman analysis, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The electrochemical characterization was performed using a three-electrode system, utilizing a choline chloride-based deep eutectic solvent (DES) as an eco-friendly and sustainable electrolyte. Optimal time and temperature allowed the preparation of glycogen-based carbon materials, with a specific surface area of 1526 m2 g-1, a pore volume of 0.38 cm3 g-1, and an associated specific capacitance of 657 F g-1 at a current density of 1 A g-1, at 30 °C. The optimal material was scaled up to a two-electrode supercapacitor using a DES-based solid-state electrolyte (SSE@DES). This prototype delivered a maximum capacitance of 703 F g-1 at a 1 A g-1 of current density, showing 75% capacitance retention over 1000 cycles, delivering the highest energy density of 0.335 W h kg-1 and power density of 1341 W kg-1. Marine waste can be a sustainable source for producing nanoporous carbon materials to be incorporated as electrode materials in energy storage devices.

5.
Anal Chim Acta ; 1259: 341168, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37100473

ABSTRACT

A plasmonic nanostructure was constructed as a biorecognition element coupled to an optical sensing platform in sandwich format, targeting the hazelnut Cor a 14 allergen-encoding gene. The analytical performance of the genosensor presented a linear dynamic range between 100 amol L-1 and 1 nmol L-1, a limit of detection (LOD) < 19.9 amol L-1, and a sensitivity of 13.4 ± 0.6 m°. The genosensor was successfully hybridized with hazelnut PCR products, tested with model foods, and further validated by real-time PCR. It reached a LOD <0.001% (10 mg kg-1) of hazelnut in wheat material (corresponding to 1.6 mg kg-1 of protein) and a sensitivity of -17.2 ± 0.5 m° for a linear range of 0.001%-1%. Herein, a new genosensing approach is proposed as a highly sensitive and specific alternative tool with potential application in monitoring hazelnut as an allergenic food, protecting the health of sensitized/allergic individuals.


Subject(s)
Corylus , Food Hypersensitivity , Humans , Allergens/genetics , Corylus/genetics , Corylus/chemistry , Immunoglobulin E , Plant Proteins/genetics , Plant Proteins/analysis , Real-Time Polymerase Chain Reaction
6.
Materials (Basel) ; 16(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36984217

ABSTRACT

Carbon materials derived from marine waste have been drawing attention for supercapacitor applications. In this work, chitins from squid and prawn marine wastes were used as carbon precursors for further application as electrodes for energy storage devices. Chitins were obtained through a deproteinization method based on enzymatic hydrolysis as an alternative to chemical hydrolysis as commonly presented in the literature. The obtained porous carbons were characterized using a BET surface area analyzer to determine the specific surface area and pore size, as well as scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), Raman spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), to characterize their morphology, composition, and structure. The electrochemical characterization was performed using a glassy carbon (GC) electrode modified with marine waste-based porous carbons as the working electrode through cyclic voltammetry and galvanostatic charge/discharge using ethaline, a choline chloride-based deep eutectic solvent (DES), as an eco-friendly and sustainable electrolyte. Squid and prawn chitin-based carbons presented a surface area of 149.3 m2 g-1 and 85.0 m2 g-1, pore volume of 0.053 cm3 g-1 and 0.029 cm3 g-1, and an associated specific capacitance of 20 and 15 F g-1 at 1 A g-1, respectively. Preliminary studies were performed to understand the effect of -OH groups on the chitin-based carbon surface with DES as an electrolyte, as well as the effect of aqueous electrolytes (1 mol L-1 sulphuric acid (H2SO4) and 1 mol L-1 potassium hydroxide (KOH)) on the capacitance and retention of the half-cell set up. It is provided, for the first time, the use of chitin-based carbon materials obtained through a one-step carbonization process combined with an eco-friendly DES electrolyte for potential application in energy storage devices.

7.
Anal Chim Acta ; 1191: 339310, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35033254

ABSTRACT

Artificial receptors that mimic their natural biological counterparts have several advantages, such as lower production costs and increased shelf-life stability/versatility, while overcoming the ethical issues related to raising antibodies in animals. In this work, the proposed tailor-made molecularly imprinted polymer (MIP)-allergen receptors aimed at substituting or even transcending the performance of biological antibodies. For this purpose, a MIP was proposed as an artificial antibody for the recognition of hazelnut Cor a 14-allergen. The target protein was grafted onto the conducting polypyrrole receptor film using gold screen-printed electrodes (Au-SPE). The electrochemical assessment presented a linear response for the dynamic range of 100 fg mL-1-1 µg mL-1 and a LOD of 24.5 fg mL-1, as determined by square wave voltammetry from the calibration curves prepared with standards diluted in phosphate buffer. Surface plasmon resonance (SPR) was used as a secondary transducer to evaluate the performance of the Cor a 14-MIP sensor, enabling a linear dynamic range of 100 fg mL-1- 0.1 µg mL-1 and a LOD of 18.1 fg mL-1. The selectivity of the tailored-made Cor a 14-MIP was tested against potentially cross-reactive plant/animal species based on the rebinding affinity (Freundlich isotherm-KF) of homologues/similar proteins, being further compared with custom-made polyclonal anti-Cor a 14 IgG immunosensor. Results evidenced that the MIP mimics the biorecognition of biological antibodies, presenting higher selectivity (only minor cross-reactivity towards walnut and Brazil nut 2S albumins) than the Cor a 14/anti-Cor a 14 IgG immunosensor. The application of electrochemical Cor a 14-MIP sensor to model mixtures of hazelnut in pasta enabled quantifying hazelnut down to 1 mg kg-1 (corresponding to 0.16 mg kg-1 of hazelnut protein in the matrix). To the best of our knowledge, Cor a 14-MIP is the first sensor based on an artificial/synthetic biorecognition platform for the specific detection of hazelnut allergens, while presenting high-performance parameters with demonstrated application in food safety management.


Subject(s)
Biosensing Techniques , Corylus , Molecular Imprinting , Allergens , Animals , Immunoassay , Molecularly Imprinted Polymers , Polymers , Pyrroles
8.
Nanomaterials (Basel) ; 11(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34947610

ABSTRACT

The urgent need to reduce the consumption of fossil fuels drives the demand for renewable energy and has been attracting the interest of the scientific community to develop materials with improved energy storage properties. We propose a sustainable route to produce nanoporous carbon materials with a high-surface area from commercial graphite using a dry ball-milling procedure through a systematic study of the effects of dry ball-milling conditions on the properties of the modified carbons. The microstructure and morphology of the dry ball-milled graphite/carbon composites are characterized by BET (Brunauer-Emmett-Teller) analysis, SEM (scanning electron microscopy), ATR-FTIR (attenuated total reflectance-Fourier transform infrared spectroscopy) and Raman spectroscopy. As both the electrode and electrolyte play a significant role in any electrochemical energy storage device, the gravimetric capacitance was measured for ball-milled material/glassy carbon (GC) composite electrodes in contact with a deep eutectic solvent (DES) containing choline chloride and ethylene glycol as hydrogen bond donor (HBD) in a 1:2 molar ratio. Electrochemical stability was tracked by measuring charge/discharge curves. Carbons with different specific surface areas were tested and the relationship between the calculated capacitance and the surface treatment method was established. A five-fold increase in gravimetric capacitance, 25.27 F·g-1 (G40) against 5.45 F·g-1, was found for commercial graphene in contact with DES. Optimal milling time to achieve a higher surface area was also established.

9.
Food Chem ; 361: 130122, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34082386

ABSTRACT

Two immunosensors were advanced to target hazelnut Cor a 14 based on electrochemical and optical transduction. Both approaches were developed with two types of custom-made antibodies, namely anti-Cor a 14 IgG (rabbit) and anti-Cor a 14 IgY (hen's egg) targeting the Cor a 14 allergen. Antibody immobilisation was performed via EDC/NHS onto disposable screen-printed electrodes. The detection limit (LOD) of the electrochemical immunoassay for Cor a 14 was 5-times lower than the optical, being down to 0.05 fg mL-1 with a dynamic range of 0.1 fg mL-1 to 0.01 ng mL-1. Antibody selectivity was verified against non-target 2S albumins (potential cross-reactive plant species). Anti-Cor a 14 IgY exhibited the best specificity, presenting minor cross-reactivity with peanut/walnut. Preliminary results of the application of anti-Cor a 14 IgY electrochemical immunosensor to incurred foods established a LOD of 1 mg kg-1 of hazelnut in wheat (0.16 mg kg-1 hazelnut protein).


Subject(s)
Allergens/immunology , Corylus/immunology , Allergens/chemistry , Animals , Antibodies/immunology , Antigens, Plant/chemistry , Antigens, Plant/immunology , Arachis/chemistry , Arachis/immunology , Biosensing Techniques , Chickens , Corylus/chemistry , Cross Reactions , Immunoassay , Juglans/chemistry , Juglans/immunology , Nuts/immunology , Rabbits
10.
Nanomaterials (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35010051

ABSTRACT

A suitable dispersion of carbon materials (e.g., carbon nanotubes (CNTs)) in an appropriate dispersant media, is a prerequisite for many technological applications (e.g., additive purposes, functionalization, mechanical reinforced materials for electrolytes and electrodes for energy storage applications, etc.). Deep eutectic solvents (DES) have been considered as a promising "green" alternative, providing a versatile replacement to volatile organic solvents due to their unique physical-chemical properties, being recognized as low-volatility fluids with great dispersant ability. The present work aims to contribute to appraise the effect of the presence of MWCNTs and Ag-functionalized MWCNTs on the physicochemical properties (viscosity, density, conductivity, surface tension and refractive index) of glyceline (choline chloride and glycerol, 1:2), a Type III DES. To benefit from possible synergetic effects, AgMWCNTs were prepared through pulse reverse electrodeposition of Ag nanoparticles into MWCNTs. Pristine MWCNTs were used as reference material and water as reference dispersant media for comparison purposes. The effect of temperature (20 to 60 °C) and concentration on the physicochemical properties of the carbon dispersions (0.2-1.0 mg cm-3) were assessed. In all assessed physicochemical properties, AgMWCNTs outperformed pristine MWCNTs dispersions. A paradoxical effect was found in the viscosity trend in glyceline media, in which a marked decrease in the viscosity was found for the MWCNTs and AgMWCNTs materials at lower temperatures. All physicochemical parameters were statistically analyzed using a two-way analysis of variance (ANOVA), at a 5% level of significance.

11.
Anal Chim Acta ; 1082: 126-135, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31472701

ABSTRACT

Considering the high incidence level and mortality rate of ovarian cancer, particularly among the European female population, the carbohydrate antigen 125 (CA-125) was selected as the protein target for this study for the development of a MIP-based biosensor. This work presents the development of molecular imprinting polymers (MIPs) on gold electrode surface for CA-125 biomarker recognition. The preparation of the CA-125 imprinting was obtained by electropolymerization of pyrrole (Py) monomer in a gold electrode using cyclic voltammetry (CV) in order to obtain highly selective materials with great molecular recognition capability. The quantification of CA-125 biomarker was made through the comparison of two methods: electrochemical (square wave voltammetry -SWV) and optical transduction (surface plasmon resonance -SPR). SWV has been widely used in biological molecules analysis since it is a fast and sensitive technique. In turn, SPR is a non-destructive optical technique that provides high-quality analytical data of CA-125 biomarker interactions with MIP. Several analytical parameters, such as sensitivity, linear response interval, and detection limit were determined to proceed to the performance evaluation of the electrochemical and optical transduction used in the development of the CA-125 biosensor. The biosensor based in the electrochemical transduction was the one that presented the best analytical parameters, yielding a good selectivity and a detection limit (LOD) of 0.01 U/mL, providing a linear concentration range between 0.01 and 500 U/mL. This electrochemical biosensor was selected for the study and it was successfully applied in the CA-125 analysis in artificial serum samples with recovery rates ranging from 91 to 105% with an average relative error of 5.8%.


Subject(s)
CA-125 Antigen/blood , Electrochemical Techniques/methods , Membrane Proteins/blood , Molecular Imprinting , Surface Plasmon Resonance/methods , CA-125 Antigen/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Gold/chemistry , Humans , Limit of Detection , Membrane Proteins/chemistry , Polymers/chemistry , Pyrroles/chemistry
12.
Phys Chem Chem Phys ; 16(24): 12237-50, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24821484

ABSTRACT

A specific methodology based on nitric acid hydrothermal oxidation was used to control the surface chemistry of multi-walled (MWCNTs) and single-walled (SWCNTs) carbon nanotubes (CNTs) with different lengths, and this methodology was adapted to the use of sulphuric acid containing ammonium persulfate as an oxidizing agent. The amount of oxygen-containing surface groups depends on the number and length of the graphene layers of the CNTs, thicker and shorter CNTs having more reactive sites for surface functionalization. In particular, the oxidation of MWCNTs was more pronounced than that of short SWCNTs and less surface groups were introduced into long SWCNTs, regardless of the acid used at any fixed concentration. It was also possible to tailor the surface chemistry of both SWCNTs and MWCNTs by using the adopted methodologies, and the amount of both oxygen- and sulphur-containing functional groups was correlated with the concentration of each oxidizing agent used. Mathematical functions that allow precise control of the amount and type of the surface groups introduced into carbon nanotubes were obtained. Buckypapers were also prepared over a polytetrafluoroethylene commercial membrane. These membranes were tested in direct contact membrane distillation and, under salinity conditions, the membrane prepared using oxidized MWCNTs (instead of SWCNTs) was the most efficient, the permeate flux of the commercial membrane significantly increasing in the presence of these CNTs, while completely rejecting chloride ions. In addition, the permeate flux was precisely correlated with the amount of oxygenated functional surface groups (as well as with the pH of point of zero charge) of the oxidized MWCNTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...