Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nitric Oxide ; 119: 50-60, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34958954

ABSTRACT

Organic nitrates are widely used to restore endogenous nitric oxide (NO) levels reduced by endothelial nitric oxide synthase dysfunction. However, these drugs are associated with undesirable side effects, including tolerance. This study aims to investigate the cardiovascular effects of the new organic nitrate 1,3-diisobutoxypropan-2-yl nitrate (NDIBP). Specifically, we assessed its effects on blood pressure, vascular reactivity, acute toxicity, and the ability to induce tolerance. In vitro and ex vivo techniques showed that NDIBP released NO both in a cell-free system and in isolated mesenteric arteries preparations through a process catalyzed by xanthine oxidoreductase. NDIBP also evoked endothelium-independent vasorelaxation, which was significantly attenuated by 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO, 300 µM), a nitric oxide scavenger; 1-H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 µM), a soluble guanylyl cyclase inhibitor; tetraethylammonium (TEA, 3 mM), a potassium channel blocker; febuxostat (500 nM), a xanthine oxidase inhibitor; and proadifen (10 µM), an inhibitor of cytochrome P450 enzyme. Furthermore, this organic nitrate did not induce tolerance in isolated vessels and presented low toxicity following acute oral administration. In vivo changes on cardiovascular parameters were assessed using normotensive and renovascular hypertensive rats. NDIBP evoked a reduction of blood pressure that was significantly higher in hypertensive animals. Our results suggest that NDIBP acts as a NO donor, inducing blood pressure reduction without having the undesirable effects of tolerance. Those effects seem to be mediated by activation of NO-sGC-cGMP pathway and positive modulation of K+ channels in vascular smooth muscle.


Subject(s)
Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Mesenteric Arteries/drug effects , Nitrates/therapeutic use , Nitric Oxide Donors/therapeutic use , Vasodilator Agents/therapeutic use , Animals , Antihypertensive Agents/metabolism , Cytochrome P-450 Enzyme System/metabolism , Female , Hypertension/metabolism , Male , Nitrates/metabolism , Nitric Oxide/metabolism , Nitric Oxide Donors/metabolism , Potassium Channels/metabolism , Rats, Wistar , Signal Transduction/drug effects , Soluble Guanylyl Cyclase/metabolism , Vasodilator Agents/metabolism , Xanthine Dehydrogenase/metabolism
2.
Biomed Pharmacother ; 128: 110247, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32450524

ABSTRACT

Structural diversity characterizes natural products as prototypes for design of lead compounds. The aim of this study was to synthetize, and to evaluate the toxicity and antitumor action of a new piperine analogue, the butyl 4-(4-nitrobenzoate)-piperinoate (DE-07). Toxicity was evaluated against zebrafish, and in mice (acute and micronucleus assays). To evaluate the DE-07 antitumor activity Ehrlich ascites carcinoma model was used in mice. Angiogenesis, Reactive Oxygen Species (ROS) production and cytokines levels were investigated. Ninety-six hours exposure to DE-07 did not cause morphological or developmental changes in zebrafish embryos and larvae, with estimated LC50 (lethal concentration 50%) higher than 100 µg/mL. On the acute toxicity assay in mice, LD50 (lethal dose 50%) was estimated at around 1000 mg/kg, intraperitoneally (i.p.). DE-07 (300 mg/kg, i.p.) did not induce increase in the number of micronucleated erythrocytes in mice, suggesting no genotoxicity. On Ehrlich tumor model, DE-07 (12.5, 25 or 50 mg/kg, i.p.) induced a significant decrease on cell viability. In addition, there was an increase on ROS production and a decrease in peritumoral microvessels density. Moreover, DE-07 induced an increase of cytokines levels involved in oxidative stress and antiangiogenic effect (IL-1ß, TNF-α and IL-4). No significant clinical toxicological effects were recorded in Ehrlich tumor transplanted animals. These data provide evidence that DE-07 presents low toxicity, and antitumor effect via oxidative and antiangiogenic actions by inducing modulation of inflammatory response in the tumor microenvironment.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Anti-Inflammatory Agents/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Neovascularization, Pathologic , Oxidants/pharmacology , Oxidative Stress , Piperidines/pharmacology , Tumor Microenvironment , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/toxicity , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/toxicity , Carcinoma, Ehrlich Tumor/immunology , Carcinoma, Ehrlich Tumor/metabolism , Carcinoma, Ehrlich Tumor/pathology , Cytokines/metabolism , Male , Mice , Oxidants/chemical synthesis , Oxidants/toxicity , Piperidines/chemical synthesis , Piperidines/toxicity , Reactive Oxygen Species/metabolism , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...