Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 336: 122129, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670770

ABSTRACT

Hyaluronan, a linear glycosaminoglycan comprising D-N-acetylglucosamine and D-glucuronic acid, is the main component of the extracellular matrix. Its influence on cell proliferation, migration, inflammation, signalling, and other functions, depends heavily on its molecular weight and chemical modification. Unsaturated HA oligosaccharides are available in defined length and purity. Their potential therapeutic utility can be further improved by chemical modification, e. g., reduction. No synthesis of such modified oligosaccharides, either stepwise or by hyaluronan cleavage, has been reported yet. Here we show a three-step synthesis (esterification, depolymerization and reduction) of unsaturated even numbered hyaluronan oligosaccharides with carboxylates and the reducing terminus reduced to an alcohol. Particular oligosaccharides were synthesised. The modified oligosaccharides are not cleaved by mammalian or bacterial hyaluronidase and do not affect the growth of mouse and human fibroblasts. Further, MTT and NRU viability tests showed that they inhibit the growth of human colon carcinoma cells HT-29 by 20-50 % in concentrations 500-1000 µg/mL. Interestingly, this effect takes place regardless of CD44 receptor expression and was not observed with unmodified HA oligosaccharides. These compounds could serve as enzymatically stable building blocks for biologically active substances.


Subject(s)
Cell Proliferation , Cytostatic Agents , Hyaluronic Acid , Hyaluronoglucosaminidase , Oligosaccharides , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Humans , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Animals , Mice , Cell Proliferation/drug effects , Hyaluronoglucosaminidase/metabolism , Hyaluronoglucosaminidase/antagonists & inhibitors , Cytostatic Agents/pharmacology , Cytostatic Agents/chemistry , Cytostatic Agents/chemical synthesis , HT29 Cells , Hyaluronan Receptors/metabolism , Fibroblasts/drug effects
2.
Carbohydr Polym ; 321: 121283, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37739524

ABSTRACT

In this work, amphiphilic hyaluronan was synthesized by grafting succinylated N-oleoyl-phytosphingosine via esters bonds. Succinylated N-oleoyl-phytosphingosine (sCER) was first prepared by esterification of hydroxyl moieties of the ceramide with succinic anhydride. The esterification of hyaluronan was governed by crowding effect. The oligomeric HA-sCER derivatives exhibited a strong self-aggregation as evidenced by a very low critical aggregation concentration (1.9 µg mL-1), higher pyrene binding constant (KB), and the smallest particle size (30 nm) in solution. The self-aggregation properties demonstrated to be a function of the substitution degree and molecular weight of HA. The prepared derivatives were non-cytotoxic towards cell lines NIH-3T3. Nanoparticles prepared using oligomeric HA-sCER derivatives improved the penetration of Nile red dye through the stratum corneum due to their smaller size (≤50 nm). The fluorescence intensity localized at the stratum corneum was higher for oligomeric HA-sCER. A significant inhibition of the pro-inflammatory cytokine interleukin-6 production was observed in vitro in macrophages differentiated from THP-1 cells. These findings showed that HA-sCER constituted a promising active ingredient for cosmetics use.


Subject(s)
Drug Delivery Systems , Hyaluronic Acid , Esterification , Ceramides
3.
Biomolecules ; 11(10)2021 09 30.
Article in English | MEDLINE | ID: mdl-34680064

ABSTRACT

Hyaluronan (HA) is widely used for eye drops as lubricant to counteract dry eye disease. High and low molecular weight HA are currently used in ophthalmology. However, a large portion of the current literature on friction and lubrication addresses articular (joint) cartilage. Therefore, eye drops compositions based on HA and its derivatized forms are extensively characterized providing data on the tribological and mucoadhesive properties. The physiochemical properties are investigated in buffers used commonly in eye drops formulations. The tribological investigation reveals that amphiphilic HA-C12 decreases the friction coefficient. At the same time, the combination of trehalose/HA or HAC12 enhances up to eighty-fold the mucoadhesiveness. Thus, it is predicted a prolonged residence time on the surface of the eye. The incorporation of trehalose enhances the protection of human keratinocytes (HaCaT) cells, as demonstrated in an in-vitro cell-desiccation model. The presence of trehalose increases the friction coefficient. Medium molecular weight HA shows significantly lower friction coefficient than high molecular weight HA. This research represents a first, wide array of features of diverse HA forms for eye drops contributing to increase the knowledge of these preparations. The results here presented also provide valuable information for the design of highly performing HA-formulations addressing specific needs before preclinic.


Subject(s)
Drug Delivery Systems , Eye/drug effects , Hyaluronic Acid/pharmacology , Lubrication , Adhesiveness , Animals , Desiccation , Filtration , Friction , HaCaT Cells , Humans , Hyaluronic Acid/chemical synthesis , Hyaluronic Acid/chemistry , Mucus/drug effects , Nephelometry and Turbidimetry , Ophthalmic Solutions/pharmacology , Proton Magnetic Resonance Spectroscopy , Rheology , Sterilization , Viscosity
4.
Carbohydr Polym ; 267: 118197, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119164

ABSTRACT

In this work, low molecular weight hyaluronan was chemically modified by oleoyl moieties utilising mixed anhydrides methodology. The activation of oleic acid with benzoyl chloride in organic solvents miscible with water was followed by NMR spectroscopy. The product selectivity correlates with the solvent's Hildebrand solubility parameter. Furthermore, the effect of the solvent for the mixed anhydride formation was elucidated by density functional theory (DFT) and showed that the reactions are faster in acetonitrile or alcohols than in hexane. Furthermore, the solvent demonstrated to control the substituent distribution pattern along HA chain during esterification. An even distribution of substituents was observed in reactions performed in water mixed with ethers. The substituent distribution pattern clearly influenced the aggregation behaviour of amphiphilic HA, controlling the stability of the delivery system, while increasing the encapsulation capacity.

5.
Carbohydr Polym ; 246: 116578, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747245

ABSTRACT

This work concerns the chemical modification of medium molecular weight hyaluronan for ophthalmic applications. The synthesis of amphiphilic HA with dodecanoyl moities was carried out under mild aqueous conditions. Perfect control of the degree of substitution was obtained by varying the molar ratio of activated fatty acid used in the reaction feed. Moreover, the preparation of the derivatives was optimized to achieve the desired degree of substitution (DS = 9.0 ± 0.2 %). The prepared hyaluronan derivatives were water-soluble and exhibited self-associating properties (amphiphilicity). The structure of the prepared derivatives was elucidated by NMR spectroscopy, rheology, turbidity, SEC-MALLS, and gas chromatography (GC). The hydrophobic moieties increase the solution viscosity by physical crosslinking. Low concentration of HAC12 is needed to prepare highly viscous solutions with potential use for ophthalmic applications. Amphiphilic HA kept the biocompatibility of hyaluronan. The degree of substitution and Mw of the amphiphilic HA controls the sterilization by filtration. The protection against desiccation was tested using human keratinocytes (HaCaT) cells lines.


Subject(s)
Drug Compounding/methods , Hyaluronic Acid/chemistry , Lauric Acids/chemistry , Lubricant Eye Drops/chemistry , Animals , Cell Survival/drug effects , Dry Eye Syndromes/drug therapy , HaCaT Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lubricant Eye Drops/pharmacology , Lubricant Eye Drops/therapeutic use , Mice , Molecular Weight , Mucins/chemistry , NIH 3T3 Cells , Rheology/methods , Surface Tension/drug effects , Viscosity/drug effects
6.
Carbohydr Polym ; 231: 115733, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31888823

ABSTRACT

All-trans retinoic acid (ATRA) was grafted to hyaluronan (HA) via esterification. The reaction was mediated by mixed anhydrides. A perfect control of the degree of substitution (0.5-7.5%) was obtained by varying the molar ratio of retinoic acid in the feed. The degree of substitution plays a significant role in the long-term stability. The photodegradation of HA-ATRA upon UVA irradiation resulted in ß-ionone, ß-cyclocitral and 5,6-epoxy-(E)-retinoic acid. The photostability of the conjugate had increased with the combination with morin. The chemical structure of HA-ATRA and its degradation products was elucidated using NMR spectroscopy, SEC-MALLS, and gas chromatography-mass spectrometry (GC-MS). ATRA did not loss its biological activity after conjugation, as demonstrated by gene expression. The derivative was able to penetrate across the stratum corneum. Besides, HA-ATRA downregulated the expression of anti-inflammatory interleukins 6 and 8. HA-ATRA would be expected to be used for transdermal drug delivery or cosmetics.


Subject(s)
Antioxidants/pharmacology , Hyaluronic Acid/chemistry , Skin/drug effects , Tretinoin/chemistry , Administration, Cutaneous , Anhydrides/chemistry , Animals , Antioxidants/chemistry , Esterification , Flavonoids/chemistry , Hyaluronic Acid/chemical synthesis , Hyaluronic Acid/pharmacology , Mice , NIH 3T3 Cells , Norisoprenoids/chemistry , Norisoprenoids/pharmacology , Photolysis/drug effects , Skin/radiation effects , Tretinoin/chemical synthesis , Tretinoin/pharmacology , Ultraviolet Rays
7.
Polymers (Basel) ; 12(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878337

ABSTRACT

In this work, a new amphiphilic derivative made of 10-undecylenic acid grafted to hyaluronan was prepared by mixed anhydrides. The reaction conditions were optimized, and the effect of the molecular weight (Mw), reaction time, and the molar ratio of reagents was explored. Using this methodology, a degree of substitution up to 50% can be obtained. The viscosity of the conjugate can be controlled by varying the substitution degree. The physicochemical characterization of the modified hyaluronan was performed by infrared spectroscopy, Nuclear Magnetic Resonance, Size-Exclusion Chromatography combined with Multiangle Laser Light Scattering (SEC-MALLS), and rheology. The low proton motility and self-aggregation of the amphiphilic conjugate produced overestimation of the degree of substitution. Thus, a novel method using proton NMR was developed. Encapsulation of model hydrophobic guest molecules, coenzyme Q10, curcumin, and α-tocopherol into the micellar core was also investigated by solvent evaporation. HA-UDA amphiphiles were also shown to self-assemble into spherical nanostructures (about 300 nm) in water as established by dynamic light scattering. Furthermore, HA-UDA was crosslinked via radical polymerization mediated by ammonium persulphate (APS/TEMED). The cross-linking was also tested by photo-polymerization catalyzed by Irgacure 2959. The presence of the hydrophobic moiety decreases the swelling degree of the prepared hydrogels compared to methacrylated-HA. Here, we report a novel hybrid hyaluronan (HA) hydrogel system of physically encapsulated active compounds and chemical crosslinking for potential applications in drug delivery.

8.
Carbohydr Polym ; 193: 383-392, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29773394

ABSTRACT

In this work, amphiphilic hyaluronic acid (HA) was synthesized by the chemical bonding of steroids. Particularly, succinyl cholesterol (SCH), cholic acid (CA), deoxycholic acid (DOCA), and 18ß-glycyrrhetinic acid (GA) were activated by benzoyl chloride towards the esterification reaction of HA in water. The degree of substitution can be controlled by varying the feed ratio of mixed anhydride to HA and up to 25% (mol/mol) can be obtained. Due to mild reaction conditions, no degradation of the polysaccharide was observed. The prepared amphiphilic polymers were characterized by NMR, infrared spectroscopy (FT-IR) and SEC/MALLS, as well as turbidity and size of the aggregates. The developed system is proposed for the delivery of hydrophobic drugs; for this purpose, curcumin, vitamin E and coenzyme Q10 were used as hydrophobic models; these molecules were loaded into the conjugates with high efficiency. The loading capacity was a function of degree of substitution. Furthermore, the biocompatibility of the derivatives and the cellular uptake of the delivery system enabled us to demonstrate the potential of the prepared delivery systems.


Subject(s)
Antioxidants/chemistry , Drug Delivery Systems , Drug Design , Hyaluronic Acid/chemistry , Steroids/chemistry , Animals , Antioxidants/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Hyaluronic Acid/pharmacology , Hydrophobic and Hydrophilic Interactions , Mice , Molecular Conformation , NIH 3T3 Cells , Steroids/pharmacology , Structure-Activity Relationship
9.
J Mater Sci Mater Med ; 29(3): 32, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29546462

ABSTRACT

In this work, a hybrid copolymer consisting of poly(3-hydroxybutyrate) grafted to hyaluronic acid (HA) was synthesised and characterised. Once formed, the P(3HB)-g-HA copolymer was soluble in water allowing a green electrospinning process. The diameters of nanofibres can be tailored by simply varying the Mw of polymer. The optimization of the process allowed to produce fibres of average diameter in the range of 100-150 nm and low polydispersity. The hydrophobic modification has not only increased the fibre diameter, but also the obtained layers were homogenous. At the nanoscale, the hybrid copolymer exhibited an unusual hairy topography. Moreover, the hardness and tensile properties of the hybrid were found to be superior compared to fibres made of unmodified HA. Particularly, this reinforcement was achieved at the longitudinal direction. Additionally, this work reports the use in the composition of a water-soluble copolymer containing photo cross-linkable moieties to produce insoluble materials post-electrospinning. The derivatives as well as their nanofibrous mats retain the biocompatibility of the natural polymers used for the fabrication.


Subject(s)
Absorbable Implants , Biocompatible Materials , Hyaluronic Acid/chemistry , Hydroxybutyrates/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biomechanical Phenomena , Delivery of Health Care , Equipment and Supplies , Hydrophobic and Hydrophilic Interactions , Hydroxybutyrates/chemical synthesis , Polyesters/chemical synthesis , Polymers/chemical synthesis , Polymers/chemistry , Tissue Scaffolds/chemistry
10.
Carbohydr Polym ; 171: 220-228, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28578957

ABSTRACT

This work reports the synthesis and characterisation of new amphiphilic hyaluronan (HA) grafted with poly(3-hydroxyalkanoates) (PHAs) conjugates. Hydrolytic depolymerisation of PHAs was used for the synthesis of defined oligo(3-hydroxyalkanoates)-containing carboxylic terminal moieties. A kinetic study of the depolymerisation was followed to prepare oligomers of required molecular weight. PHAs were coupled with hydroxyl groups of HA mediated by N, N'-carbonyldiimidazole (CDI) or HSTU Tetramethyl-O-(N-succinimidyl) uronium hexafluorophosphate. For the first time, the covalent bonding of oligo derivatives of P(3-hydroxybutyrate), P(3-hydroxyoctanoate), P(3-hydroxyoctanoate-co-3-hydroxydecanoate) and P(3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate) and HA was achieved by "grafting to" strategy. Achieved grafting degree was a function of hydrophobicity of PHA, Mw and polarity of the solvent. The most suitable reaction conditions were observed for oligo (3-hydroxybutyrate) grafted to HA (grafting degree of 14%). Graft copolymers were characterized by FT-IR, NMR, DSC and SEC-MALLS. Graft copolymers can be physically loaded with hydrophobic drugs and may serve as drug delivery system.

11.
Carbohydr Polym ; 152: 815-824, 2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27516333

ABSTRACT

In this study, hyaluronan (HA) was grafted with alpha-linolenic acid (αLNA) by benzoyl mixed anhydrides methodology, which allowed the derivatization of HA under mild reaction conditions. The reaction was optimized and transferred from laboratory to semi-scale production. The derivative revealed an unexpected cytotoxicity after oven drying and storage at 40°C. For this reason, the storage conditions of sodium linolenyl hyaluronate (αLNA-HA) were optimized in order to preserve the beneficial effect of the derivative. Oven, spray dried and lyophilized samples were prepared and stored at -20°C, 4°C and 25°C up to 6 months. A comprehensive material characterization including stability study of the derivative, as well as evaluation of possible changes on chemical structure and presence of peroxidation products were studied by Nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS), thermogravimetric analysis (TGA) and complemented with assessment of in vitro viability on mouse fibroblasts NIH-3T3. The most stable αLNA-HA derivative was obtained after spray drying and storage at ambient temperature under inert atmosphere. The choice of inert atmosphere is recommended to suppress oxidation of αLNA supporting the positive influence of the derivative on cell viability. The encapsulation of hydrophobic drugs of αLNA-HA were also demonstrated.


Subject(s)
Drug Carriers , Hyaluronic Acid , alpha-Linolenic Acid , Animals , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Drug Stability , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacokinetics , Hyaluronic Acid/pharmacology , Mice , NIH 3T3 Cells , alpha-Linolenic Acid/chemistry , alpha-Linolenic Acid/pharmacokinetics , alpha-Linolenic Acid/pharmacology
12.
J Biomed Opt ; 21(5): 56007, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27232594

ABSTRACT

We describe a modification of epifluorescence microscopes that allows quantitative widefield imaging of samples labeled by upconverting nanoparticles (UCNP). A top-hat illumination profile on the sample was achieved with a 980-nm laser diode by using tandem microlens arrays, a moving diffuser and a telescope, which adjusts the top-hat area to the field of view. Illumination homogeneity is a critical factor for imaging of UCNP since the intensity of their luminescence typically scales with the second power of the excitation intensity. Our illuminator is combined with the epifluorescence attachment of the microscope, allowing easy switching between observation of UCNP and traditional fluorescent dyes. Illumination profile homogeneity of about 98% was measured for objectives with magnification from 4× to 100×, and the top-hat profile was also obtained with phase contrast objectives. We demonstrate capability of the illuminator by evaluating in vitro uptake of UCNP encapsulated in oleyl-hyaluronan micelles into breast cancer cells. Micelles bearing the targeting peptide were about an order of magnitude more efficient than nontargeted micelles.


Subject(s)
Lasers , Microscopy, Fluorescence/instrumentation , Nanoparticles/metabolism , Cell Line, Tumor , Fluorescent Dyes , Humans , Lighting , Luminescence , Nanoparticles/ultrastructure
13.
Carbohydr Polym ; 137: 255-263, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26686128

ABSTRACT

In this work, hyaluronan (HA) was grafted by a novel and an efficient mixed anhydrides methodology with (hetero)-aryl and aliphatic acrylic moieties suitable for cross-linking. A precise control of stoichiometry was achieved. Derivatives with degree of substitution (DS) below 20% did not show self-crosslinking. Due to mild reaction conditions, a negligible degradation of the polysaccharide was obtained. The influence of the feed components on the reaction efficiency and DS were studied up to 200 g/batch. The structure of the modified HA was characterized by Infrared Spectroscopy, Nuclear Magnetic Resonance, SEC-MALS and chromatographic analyses. Enzymatic degradation of derivatives was performed and isolated dimers demonstrated to be non-cytotoxic. The feasibility of the grafted HA for electrospinning with subsequent photo-crosslinking to avoid nanofibers water dissolution was demonstrated. The biocompatibility of the material, its degradation products, and the formation of honeycomb porous structures also proved the potential of the material for future in vivo applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...