Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Blood ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861668

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformative efficacy in treating B-cell malignancies. However, high cost and manufacturing complexities hinder their widespread use. To overcome these hurdles, we have developed the VivoVecTM platform, a lentiviral vector capable of generating CAR T-cells in vivo. Here we describe the incorporation of T cell activation and costimulatory signals onto the surface of VivoVecTM particles (VVPs) in the form of a multi-domain fusion protein and show enhanced in vivo transduction and improved CAR-T cell antitumor functionality. Furthermore, in the absence of lymphodepleting chemotherapy, administration of VVPs into non-human primates resulted in the robust generation of anti-CD20 CAR T-cells and the complete depletion of B cells for more than 10 weeks. These data validate the VivoVecTM platform in a translationally relevant model and support its transition into human clinical testing, offering a paradigm shift in the field of CAR T-cell therapies.

2.
Nat Med ; 30(5): 1406-1415, 2024 May.
Article in English | MEDLINE | ID: mdl-38745011

ABSTRACT

GRN mutations cause progranulin haploinsufficiency, which eventually leads to frontotemporal dementia (FTD-GRN). PR006 is an investigational gene therapy delivering the granulin gene (GRN) using an adeno-associated virus serotype 9 (AAV9) vector. In non-clinical studies, PR006 transduced neurons derived from induced pluripotent stem cells of patients with FTD-GRN, resulted in progranulin expression and improvement of lipofuscin, lysosomal and neuroinflammation pathologies in Grn-knockout mice, and was well tolerated except for minimal, asymptomatic dorsal root ganglionopathy in non-human primates. We initiated a first-in-human phase 1/2 open-label trial. Here we report results of a pre-specified interim analysis triggered with the last treated patient of the low-dose cohort (n = 6) reaching the 12-month follow-up timepoint. We also include preliminary data from the mid-dose cohort (n = 7). Primary endpoints were safety, immunogenicity and change in progranulin levels in cerebrospinal fluid (CSF) and blood. Secondary endpoints were Clinical Dementia Rating (CDR) plus National Alzheimer's Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) rating scale and levels of neurofilament light chain (NfL). One-time administration of PR006 into the cisterna magna was generally safe and well tolerated. All patients developed treatment-emergent anti-AAV9 antibodies in the CSF, but none developed anti-progranulin antibodies. CSF pleocytosis was the most common PR006-related adverse event. Twelve serious adverse events occurred, mostly unrelated to PR006. Deep vein thrombosis developed in three patients. There was one death (unrelated) occurring 18 months after treatment. CSF progranulin increased after PR006 treatment in all patients; blood progranulin increased in most patients but only transiently. NfL levels transiently increased after PR006 treatment, likely reflecting dorsal root ganglia toxicity. Progression rates, based on the CDR scale, were within the broad ranges reported for patients with FTD. These data provide preliminary insights into the safety and bioactivity of PR006. Longer follow-up and additional studies are needed to confirm the safety and potential efficacy of PR006. ClinicalTrials.gov identifier: NCT04408625 .


Subject(s)
Dependovirus , Frontotemporal Dementia , Genetic Therapy , Progranulins , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/therapy , Frontotemporal Dementia/cerebrospinal fluid , Progranulins/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Dependovirus/genetics , Middle Aged , Female , Male , Aged , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/cerebrospinal fluid , Genetic Vectors , Animals , Treatment Outcome , Translational Research, Biomedical , Mice , Neurofilament Proteins/genetics , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood
3.
J Immunother Cancer ; 11(3)2023 03.
Article in English | MEDLINE | ID: mdl-36918221

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformational outcomes in the treatment of B-cell malignancies, but their widespread use is hindered by technical and logistical challenges associated with ex vivo cell manufacturing. To overcome these challenges, we developed VivoVec, a lentiviral vector-based platform for in vivo engineering of T cells. UB-VV100, a VivoVec clinical candidate for the treatment of B-cell malignancies, displays an anti-CD3 single-chain variable fragment (scFv) on the surface and delivers a genetic payload that encodes a second-generation CD19-targeted CAR along with a rapamycin-activated cytokine receptor (RACR) system designed to overcome the need for lymphodepleting chemotherapy in supporting successful CAR T-cell expansion and persistence. In the presence of exogenous rapamycin, non-transduced immune cells are suppressed, while the RACR system in transduced cells converts rapamycin binding to an interleukin (IL)-2/IL-15 signal to promote proliferation. METHODS: UB-VV100 was administered to peripheral blood mononuclear cells (PBMCs) from healthy donors and from patients with B-cell malignancy without additional stimulation. Cultures were assessed for CAR T-cell transduction and function. Biodistribution was evaluated in CD34-humanized mice and in canines. In vivo efficacy was evaluated against normal B cells in CD34-humanized mice and against systemic tumor xenografts in PBMC-humanized mice. RESULTS: In vitro, administration of UB-VV100 resulted in dose-dependent and anti-CD3 scFv-dependent T-cell activation and CAR T-cell transduction. The resulting CAR T cells exhibited selective expansion in rapamycin and antigen-dependent activity against malignant B-cell targets. In humanized mouse and canine studies, UB-VV100 demonstrated a favorable biodistribution profile, with transduction events limited to the immune compartment after intranodal or intraperitoneal administration. Administration of UB-VV100 to humanized mice engrafted with B-cell tumors resulted in CAR T-cell transduction, expansion, and elimination of systemic malignancy. CONCLUSIONS: These findings demonstrate that UB-VV100 generates functional CAR T cells in vivo, which could expand patient access to CAR T technology in both hematological and solid tumors without the need for ex vivo cell manufacturing.


Subject(s)
Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Animals , Dogs , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell , Leukocytes, Mononuclear , Tissue Distribution , Cell Engineering/methods
4.
Mod Pathol ; 32(12): 1734-1743, 2019 12.
Article in English | MEDLINE | ID: mdl-31273314

ABSTRACT

The hyalinizing trabecular adenoma/tumor is a rare and poorly characterized follicular-derived thyroid neoplasm recently shown to harbor recurrent PAX8-GLIS1 or PAX8-GLIS3 gene fusions. Here we sought to define the repertoire of genetic alterations of hyalinizing trabecular tumors, and whether PAX8-GLIS3 fusions are pathognomonic for hyalinizing trabecular tumors. A discovery series of eight hyalinizing trabecular tumors was subjected to RNA-sequencing (n = 8), whole-exome sequencing (n = 3) or targeted massively parallel sequencing (n = 5). No recurrent somatic mutations or copy number alterations were identified in hyalinizing trabecular tumor, whereas RNA-sequencing revealed the presence of a recurrent genetic rearrangement involving PAX8 (2q14.1) and GLIS3 (9p24.2) genes in all cases. In this in-frame fusion gene, which comprised exons 1-2 of PAX8 and exons 3-11 of GLIS3, GLIS3 is likely placed under the regulation of PAX8. Reverse transcription RT-PCR and/or fluorescence in situ hybridization analyses of a validation series of 26 hyalinizing trabecular tumors revealed that the PAX8-GLIS3 gene fusion was present in all hyalinizing trabecular tumors (100%). No GLIS1 rearrangements were identified. Conversely, no PAX8-GLIS3 gene fusions were detected in a cohort of 237 control thyroid neoplasms, including 15 trabecular thyroid lesions highly resembling hyalinizing trabecular tumor from a morphological standpoint, as well as trabecular/solid follicular adenomas, solid/trabecular variants of papillary carcinoma, and Hurthle cell adenomas or carcinomas. Our data provide evidence to suggest that the PAX8-GLIS3 fusion is pathognomonic for hyalinizing trabecular tumors, and that the presence of the PAX8-GLIS3 fusion in thyroid neoplasms may be used as an ancillary marker for the diagnosis of hyalinizing trabecular tumor, thereby avoiding overtreatment in case of misdiagnoses with apparently similar malignant tumors.


Subject(s)
DNA-Binding Proteins/genetics , PAX8 Transcription Factor/genetics , Repressor Proteins/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Trans-Activators/genetics , Humans , Oncogene Proteins, Fusion/genetics
5.
Nat Commun ; 9(1): 3533, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30166553

ABSTRACT

Granular cell tumors (GCTs) are rare tumors that can arise in multiple anatomical locations, and are characterized by abundant intracytoplasmic granules. The genetic drivers of GCTs are currently unknown. Here, we apply whole-exome sequencing and targeted sequencing analysis to reveal mutually exclusive, clonal, inactivating somatic mutations in the endosomal pH regulators ATP6AP1 or ATP6AP2 in 72% of GCTs. Silencing of these genes in vitro results in impaired vesicle acidification, redistribution of endosomal compartments, and accumulation of intracytoplasmic granules, recapitulating the cardinal phenotypic characteristics of GCTs and providing a novel genotypic-phenotypic correlation. In addition, depletion of ATP6AP1 or ATP6AP2 results in the acquisition of oncogenic properties. Our results demonstrate that inactivating mutations of ATP6AP1 and ATP6AP2 are likely oncogenic drivers of GCTs and underpin the genesis of the intracytoplasmic granules that characterize them, providing a genetic link between endosomal pH regulation and tumorigenesis.


Subject(s)
Granular Cell Tumor/genetics , Mutation/genetics , Receptors, Cell Surface/genetics , Vacuolar Proton-Translocating ATPases/genetics , Cell Proliferation/genetics , Cell Proliferation/physiology , Exome , Female , Flow Cytometry , Genetic Association Studies , HEK293 Cells , Humans , Male
6.
Nat Commun ; 9(1): 1816, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29739933

ABSTRACT

Adenomyoepithelioma of the breast is a rare tumor characterized by epithelial-myoepithelial differentiation, whose genetic underpinning is largely unknown. Here we show through whole-exome and targeted massively parallel sequencing analysis that whilst estrogen receptor (ER)-positive adenomyoepitheliomas display PIK3CA or AKT1 activating mutations, ER-negative adenomyoepitheliomas harbor highly recurrent codon Q61 HRAS hotspot mutations, which co-occur with PIK3CA or PIK3R1 mutations. In two- and three-dimensional cell culture models, forced expression of HRASQ61R in non-malignant ER-negative breast epithelial cells with or without a PIK3CAH1047R somatic knock-in results in transformation and the acquisition of the cardinal features of adenomyoepitheliomas, including the expression of myoepithelial markers, a reduction in E-cadherin expression, and an increase in AKT signaling. Our results demonstrate that adenomyoepitheliomas are genetically heterogeneous, and qualify mutations in HRAS, a gene whose mutations are vanishingly rare in common-type breast cancers, as likely drivers of ER-negative adenomyoepitheliomas.


Subject(s)
Adenomyoepithelioma/genetics , Adenomyoepithelioma/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/metabolism , Genes, ras , Mutation , Proto-Oncogene Proteins c-akt/metabolism , Adenomyoepithelioma/enzymology , Biomarkers, Tumor/genetics , Breast/cytology , Breast/metabolism , Breast Neoplasms/enzymology , Cadherins/metabolism , Cell Differentiation , Cell Line, Tumor , Disease Progression , Enzyme Activation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Humans , Receptors, Estrogen/metabolism , Reproducibility of Results , Signal Transduction , Exome Sequencing
7.
Cell Rep ; 8(4): 1077-92, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25131208

ABSTRACT

γ-Secretase is composed of four proteins that are obligatory for protease activity: presenilin, nicastrin, Aph1, and Pen-2. Despite the progress toward understanding the function of these individual subunits, there is no information available pertaining to the modulation of γ-secretase in response to environmental changes in cells. Here, we show that hypoxia upregulates γ-secretase activity through a direct interaction with Hif-1α, revealing an unconventional function for Hif-1α as an enzyme subunit, which is distinct from its canonical role as a transcription factor. Moreover, hypoxia-induced cell invasion and metastasis are alleviated by either γ-secretase inhibitors or a dominant-negative Notch coactivator, indicating that γ-secretase/Notch signaling plays an essential role in controlling these cellular processes. The present study reveals a mechanism in which γ-secretase can achieve temporal control through conditional interactions with regulatory proteins, such as Hif-1α, under select physiological and pathological conditions.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Breast Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Lung Neoplasms/metabolism , Receptors, Notch/metabolism , Animals , Breast Neoplasms/pathology , Cell Hypoxia , Cell Line, Tumor , Enzyme Activation , Female , Humans , Lung Neoplasms/secondary , Mice, Nude , Neoplasm Transplantation , Protein Binding , Signal Transduction , Up-Regulation
8.
PLoS One ; 8(4): e62610, 2013.
Article in English | MEDLINE | ID: mdl-23626839

ABSTRACT

Histone deacetylase (HDAC) inhibitors have emerged as effective antineoplastic agents in the clinic. Studies from our lab and others have reported that magnetic resonance spectroscopy (MRS)-detectable phosphocholine (PC) is elevated following SAHA treatment, providing a potential noninvasive biomarker of response. Typically, elevated PC is associated with cancer while a decrease in PC accompanies response to antineoplastic treatment. The goal of this study was therefore to elucidate the underlying biochemical mechanism by which HDAC inhibition leads to elevated PC. We investigated the effect of SAHA on MCF-7 breast cancer cells using (13)C MRS to monitor [1,2-(13)C] choline uptake and phosphorylation to PC. We found that PC synthesis was significantly higher in treated cells, representing 154±19% of control. This was within standard deviation of the increase in total PC levels detected by (31)P MRS (129±7% of control). Furthermore, cellular choline kinase activity was elevated (177±31%), while cytidylyltransferase activity was unchanged. Expression of the intermediate-affinity choline transporter SLC44A1 and choline kinase α increased (144% and 161%, respectively) relative to control, as determined by mRNA microarray analysis with protein-level confirmation by Western blotting. Taken together, our findings indicate that the increase in PC levels following SAHA treatment results from its elevated synthesis. Additionally, the concentration of glycerophosphocholine (GPC) increased significantly with treatment to 210±45%. This is likely due to the upregulated expression of several phospholipase A2 (PLA2) isoforms, resulting in increased PLA2 activity (162±18%) in SAHA-treated cells. Importantly, the levels of total choline (tCho)-containing metabolites, comprised of choline, PC and GPC, are readily detectable clinically using (1)H MRS. Our findings thus provide an important step in validating clinically translatable non-invasive imaging methods for follow-up diagnostics of HDAC inhibitor treatment.


Subject(s)
Breast Neoplasms/metabolism , Choline/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Phosphorylcholine/metabolism , Breast Neoplasms/genetics , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Female , Gene Expression Regulation/drug effects , Glycerylphosphorylcholine/metabolism , Humans , Hydroxamic Acids/pharmacology , MCF-7 Cells , Magnetic Resonance Spectroscopy , Vorinostat
9.
Breast Cancer Res ; 12(5): R84, 2010.
Article in English | MEDLINE | ID: mdl-20946630

ABSTRACT

INTRODUCTION: 17-allyamino-17-demethoxygeldanamycin (17-AAG), a small molecule inhibitor of Hsp90, is currently in clinical trials in breast cancer. However, 17-AAG treatment often results in inhibition of tumor growth rather than shrinkage, making detection of response a challenge. Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are noninvasive imaging methods than can be used to monitor metabolic biomarkers of drug-target modulation. This study set out to examine the MRS-detectable metabolic consequences of Hsp90 inhibition in a breast cancer model. METHODS: MCF-7 breast cancer cells were investigated, and MRS studies were performed both on live cells and on cell extracts. (31)P and (1)H MRS were used to determine total cellular metabolite concentrations and (13)C MRS was used to probe the metabolism of [1,2-(13)C]-choline. To explain the MRS metabolic findings, microarray and RT-PCR were used to analyze gene expression, and in vitro activity assays were performed to determine changes in enzymatic activity following 17-AAG treatment. RESULTS: Treatment of MCF-7 cells with 17-AAG for 48 hours caused a significant increase in intracellular levels of choline (to 266 ± 18% of control, P = 0.05) and phosphocholine (PC; to 181 ± 10% of control, P = 0.001) associated with an increase in expression of choline transporter SLC44A1 and an elevation in the de novo synthesis of PC. We also detected an increase in intracellular levels of glycerophosphocholine (GPC; to 176 ± 38% of control, P = 0.03) associated with an increase in PLA2 expression and activity. CONCLUSIONS: This study determined that in the MCF-7 breast cancer model inhibition of Hsp90 by 17-AAG results in a significant MRS-detectable increase in choline, PC and GPC, which is likely due to an increase in choline transport into the cell and phospholipase activation. (1)H MRSI can be used in the clinical setting to detect levels of total choline-containing metabolite (t-Cho, composed of intracellular choline, PC and GPC). As Hsp90 inhibitors enter routine clinical use, t-Cho could thus provide an easily detectable, noninvasive metabolic biomarker of Hsp90 inhibition in breast cancer patients.


Subject(s)
Antigens, CD/biosynthesis , Antineoplastic Agents/pharmacology , Benzoquinones/pharmacology , Breast Neoplasms/drug therapy , Choline/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Organic Cation Transport Proteins/biosynthesis , Phospholipases A2/biosynthesis , Biological Transport/drug effects , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic , Glycerylphosphorylcholine/metabolism , Humans , MCF-7 Cells , Magnetic Resonance Spectroscopy , Membrane Transport Proteins/metabolism , Phosphorylcholine/metabolism
10.
Cancer Res ; 70(4): 1296-305, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20145128

ABSTRACT

Numerous mechanism-based anticancer drugs that target the phosphatidylinositol 3-kinase (PI3K) pathway are in clinical trials. However, it remains challenging to assess responses by traditional imaging methods. Here, we show for the first time the efficacy of hyperpolarized (13)C magnetic resonance spectroscopy (MRS) in detecting the effect of PI3K inhibition by monitoring hyperpolarized [1-(13)C]lactate levels produced from hyperpolarized [1-(13)C]pyruvate through lactate dehydrogenase (LDH) activity. In GS-2 glioblastoma cells, PI3K inhibition by LY294002 or everolimus caused hyperpolarized lactate to drop to 42 +/- 12% and to 76 +/- 5%, respectively. In MDA-MB-231 breast cancer cells, hyperpolarized lactate dropped to 71 +/- 15% after treatment with LY294002. These reductions were correlated with reductions in LDH activity to 48 +/- 4%, 63 +/- 4%, and 69 +/- 12%, respectively, and were associated with a drop in levels of LDHA mRNA and LDHA and hypoxia-inducible factor-1alpha proteins. Supporting these findings, tumor growth inhibition achieved by everolimus in murine GS-2 xenografts was associated with a drop in the hyperpolarized lactate-to-pyruvate ratio detected by in vivo MRS imaging, whereas an increase in this ratio occurred with tumor growth in control animals. Taken together, our findings illustrate the application of hyperpolarized (13)C MRS of pyruvate to monitor alterations in LDHA activity and expression caused by PI3K pathway inhibition, showing the potential of this method for noninvasive imaging of drug target modulation.


Subject(s)
Carbon Isotopes , Enzyme Inhibitors/therapeutic use , Magnetic Resonance Spectroscopy/methods , Monitoring, Physiologic/methods , Neoplasms/diagnosis , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Animals , Carbon Isotopes/pharmacokinetics , Chromones/pharmacology , Chromones/therapeutic use , Drug Delivery Systems , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Everolimus , Glioblastoma/diagnosis , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Lactic Acid/pharmacokinetics , Mice , Mice, Nude , Morpholines/pharmacology , Morpholines/therapeutic use , Neoplasms/pathology , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Sirolimus/therapeutic use , Treatment Outcome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...