Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Traffic ; 7(9): 1163-76, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17004320

ABSTRACT

Early endosomes are well-established acceptor compartments of endocytic vesicles in many cell types. Little evidence of their existence or function has been obtained in synapses, and it is generally believed that synaptic vesicles recycle without passing through an endosomal intermediate. We show here that the early endosomal SNARE proteins are enriched in synaptic vesicles. To investigate their function in the synapse, we isolated synaptic nerve terminals (synaptosomes), stimulated them in presence of different fluorescent markers to label the recycling vesicles and used these vesicles in in vitro fusion assays. The recently endocytosed vesicles underwent homotypic fusion. They also fused with endosomes from PC12 and BHK cells. The fusion process was dependent upon NSF activity. Moreover, fusion was dependent upon the early endosomal SNAREs but not upon the SNAREs involved in exocytosis. Our results thus show that at least a fraction of the vesicles endocytosed during synaptic activity are capable of fusing with early endosomes and lend support to an involvement of endosomal intermediates during recycling of synaptic vesicles.


Subject(s)
Endocytosis/physiology , Endosomes/physiology , SNARE Proteins/metabolism , Synaptic Vesicles/physiology , Animals , PC12 Cells , Rats
2.
Proc Natl Acad Sci U S A ; 103(8): 2701-6, 2006 Feb 21.
Article in English | MEDLINE | ID: mdl-16469845

ABSTRACT

Membrane fusion in the secretory pathway is mediated by soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins. Different fusion steps are thought to be effected by independent sets of SNAREs, but it is unclear whether specificity is determined by an intrinsic specificity of SNARE pairing or by upstream factors. Using a newly developed microscopy-based assay, we have investigated the SNARE specificity of homotypic early endosomal fusion. We show that early endosomes contain multiple sets of SNAREs, including, in addition to the putative early endosomal SNAREs, those involved in exocytosis and in fusion of late endosomes. We demonstrate that fusion is largely mediated by a complex formed by syntaxin 13, syntaxin 6, vti1a, and VAMP4, whereas the exocytic and late endosomal SNAREs play little or no role in the reaction. In contrast, proteoliposomes reconstituted with early endosomal SNAREs promiscuously fuse with liposomes containing exocytotic or late endosomal SNAREs. We conclude that the specificity of SNARE pairing does not suffice to determine the specificity of organelle fusion.


Subject(s)
Endosomes/chemistry , Endosomes/physiology , Membrane Fusion , SNARE Proteins/analysis , SNARE Proteins/metabolism , Animals , Endosomes/ultrastructure , Membrane Fusion/drug effects , PC12 Cells , Rats , SNARE Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...