Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Chemistry ; 24(36): 9022-9032, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29676817

ABSTRACT

The benzylidyne complex [PhC≡W{OSi(OtBu)3 }3 ] (1) catalyzed the cross-metathesis between 1,4-bis(trimethylsilyl)-1,3-butadiyne (2) and symmetrical 1,3-diynes (3) efficiently, which gave access to TMS-capped 1,3-diynes RC≡C-C≡CSiMe3 (4). Diyne cross-metathesis (DYCM) studies with 13 C-labeled diyne PhC≡13 C-13 C≡CPh (3*) revealed that this reaction proceeds through reversible carbon-carbon triple-bond cleavage and formation according to the conventional mechanism of alkyne metathesis. The reaction between 1 and 3* afforded the 3-phenylpropynylidyne complex PhC≡13 C-13 C≡W{OSi(OtBu)3 }3 ] (5*), indicating that alkynylalkylidyne complexes are likely to act as catalytically active species. Attempts to isolate 5* from mixtures of 1 and 3* afforded crystals of the ditungsten 2-butyne-1,4-diylidyne complex [(tBuO)3 SiO}3 W≡13 C-13 C≡13 C-13 C≡W{OSi(OtBu)3 }3 ] (6*), which was additionally characterized by X-ray diffraction analysis. Depolymerization-macrocyclization of a carbazole-butadiyne polymer, obtained from 3,6-diethynyl-9-dodecylcarbazole (7) under copper-catalyzed Hay coupling conditions, was also efficiently catalyzed by 1 and afforded a mixture of mono-, diyne- and triyne-containing tetrameric macrocycles, revealing that diyne disproportionation into monoynes and triynes occurs as a slow side reaction that interferes with a high diyne metathesis selectivity. Potential catalytic pathways were studied by means of quantum-chemical calculations, and kinetic studies were performed to substantiate an α,α-mechanism for the catalytic diyne metathesis reaction, which involves intermediate alkynylalkylidyne and α,α'-dialkynylmetallacyclobutadiene intermediates.

2.
Chemistry ; 23(56): 13897-13900, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28833727

ABSTRACT

Chemically inert oxidometal(V) corrols of molybdenum and rhenium undergo clean ligand-exchange reactions upon the action of SiCl4 . The resulting dichlorido complexes show trigonal prismatic coordination of the metal ion with the chlorine atoms residing in a cis configuration, and were studied by optical and resonance spectroscopy as well as DFT calculations. In situ reactivity studies with carbon nucleophiles indicate high reactivity for chlorine replacement. Treatment with sodium cyclopentadienide paves the way to robust molybdenum corrolocene half-sandwich complexes. These organometallic compounds are the first corrole species that stabilize an air-stable and diamagnetic low spin d2 -MoIV center. Structural, spectroelectrochemical, and chemical investigations prove a reversible MoIV /MoV redox couple close to the Fc/Fc+ potential for these systems. The high stability of the compounds in both redox states calls for future applications in catalysis and as redox switch.

3.
Forensic Sci Int ; 277: 51-58, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28601726

ABSTRACT

In February 2017, eleven "Spice-like" products (14 individual packages including replicates) from German language internet shops were analyzed. In total, three different synthetic cannabinoids (SCs) were identified by gas-chromatography-mass spectrometry (GC-MS), namely MDMB-CHMICA and two, so far only partially described compounds, 5F-Cumyl-P7AICA and Cumyl-PeGACLONE. All analyzed products contained only one synthetic cannabinoid as active ingredient. 5F-Cumyl-P7AICA and Cumyl-PeGACLONE were subject to an in-depth characterization by nuclear magnetic resonance spectroscopy (NMR), electron ionization mass spectrometry (EI-MS), electrospray ionization tandem mass spectrometry (ESI-MS/MS), infrared and ultraviolet-visible spectroscopy (IR and UV/Vis). Cumyl-PeGACLONE shows a rather unexpected structure compared to conventional SCs of the past. Hence a global minima calculation was conducted to demonstrate structural similarity of Cumyl-PeGACLONE to JWH-018, a classical SC. In addition, all SCs were quantified by a GC-MS method using JWH-018 as internal standard and corresponding response factors. While MDMB-CHMICA was detected in six out of 14 tested products (ranging from 6 to 20mg/g; average 10mg/g), 5F-Cumyl-P7AICA and Cumyl-PeGACLONE were detected in three (109-153mg/g; average 131mg/g) and five products (15-74mg/g; average 39mg/g), respectively.

4.
Dalton Trans ; 46(14): 4737-4748, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28332672

ABSTRACT

The reactions of the molybdenum alkylidyne complex [MesC[triple bond, length as m-dash]Mo{OCMe(CF3)2}3] (1) with the diaminoacetylenes R2NC[triple bond, length as m-dash]CNR2 (2, NR2 = 4-methylpiperidinyl; 3, NR2 = NEt2; Mes = 2,4,6-trimethylphenyl) afforded the metallacyclobutadiene (MCBD) complexes 4 and 5. In contrast to all other MCBD complexes, 4 and 5 are paramagnetic and best described as Mo(iv) species containing an anionic diaminodicarbene of the type [(R2N)CC(Mes)C(NR2)]-.

5.
Chem Sci ; 7(1): 583-588, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-29896348

ABSTRACT

Cationic nickel(ii) complexes of two ring-contracted porphyrinoid ligands distantly related to the corrins were prepared by metal templated macrocyclisation. The compounds show reversible electron transfer processes and were found to be the first porphyrinoid-based catalysts for C-C cross-coupling.

6.
Inorg Chem ; 54(24): 12032-45, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26652203

ABSTRACT

The bis(imidazolin-2-imine) ligand N,N'-bis(1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene)-1,1'-ferrocenediamine, fc(NIm)2 (1) was prepared. Its reaction with [NiCl2(dme)] (dme = 1,2-dimethoxyethane) or [PdCl2(MeCN)2] afforded the tetrahedral, paramagnetic complex [(1-κ(2)N,N')NiCl2] (6a) or the diamagnetic, square-planar complex [(1-κ(2)N,N')PdCl2] (6b), respectively. For the latter, slow rearrangement to the ionic complex [(1-κFe,κ(2)N,N')PdCl]Cl, [7]Cl, was observed, which was followed by (1)H NMR and UV/vis spectroscopy. Treatment of [7]Cl with NaBF4 afforded [7]BF4; the palladium atoms in both cations adopt square-planar environments with short Fe-Pd bonds (ca. 2.65 Å). In addition, a series of dicationic complexes of the type [(1-κFe,κ(2)N,N')ML](BF4)2 (8a: M = Ni, L = MeCN; 8b: M = Pd, L = MeCN; 9a: M = Ni, L = PMe3; 9b: M = Pd, L = PMe3) was prepared from 6a (M = Ni) or [7]BF4 by chloride abstraction with NaBF4 or AgBF4 in the presence of acetonitrile or trimethylphosphine, respectively. In the presence of triphenylphosphine, the palladium(II) complex [(1-κFe,κ(2)N,N')Pd(PPh3)](BF4)2 (10) was isolated. Iron-nickel and iron-palladium bonding in these complexes was studied experimentally by NMR, UV/vis, and Mössbauer spectroscopy and by cyclic voltammetry. Detailed DFT calculations were carried out for the cations [(1-κFe,κ(2)N,N')M(MeCN)](2+) in the 8a/8b couple, with Bader's atoms in molecules theory revealing the presence of noncovalent, closed-shell metal-metal interactions. Potential energy surface scans with successive elongation of the Fe-M bonds allow an estimation of the iron-metal bond dissociation energies (BDE) as BDE(Fe-Ni) = 11.3 kcal mol(-1) and BDE(Fe-Pd) = 24.3 kcal mol(-1).

7.
Angew Chem Int Ed Engl ; 54(28): 8213-6, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26074281

ABSTRACT

The reaction of 5,10,15-trimesitylcorrole (H3 cor) with tungsten hexachloride and tungsten hexacarbonyl resulted in the unexpected formation of the 3,17-dichloro-5,10,15-trimesitylcorrole radical (H2 cor*) as an air-stable product. X-ray crystallography proved the planarization of the corrole radical structure, which was rationalized by the reduced steric hindrance of two versus three hydrogen atoms inside the N4 cavity. Although the aromaticity was lost, no specific changes in C-C or C-N bond distances could be observed. The regioselectivity of the two-fold chlorination is the result of the nucleophilic attack of chloride ions to an oxidized corrole macrocycle, and is supported by DFT results. The corrole radical acts as a dianionic ligand and allows the insertion of the divalent zinc(II) cation, which usually does not form neutral corrole complexes.

8.
J Am Chem Soc ; 135(33): 12448-59, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23883399

ABSTRACT

A series of lithium complexes of anionic N-heterocyclic carbenes that contain a weakly coordinating borate moiety (WCA-NHC) was prepared in one step from free N-heterocyclic carbenes by deprotonation with n-butyl lithium followed by borane addition. The reaction of the resulting lithium-carbene adducts with [M(COD)Cl]2 (M = Rh, Ir; COD = 1,5-cyclooctadiene) afforded zwitterionic rhodium(I) and iridium(I) complexes of the type [(WCA-NHC)M(COD)], in which the metal atoms exhibit an intramolecular interaction with the N-aryl groups of the carbene ligands. For M = Rh, the neutral complex [(WCA-NHC)Rh(CO)2] and the ate complex (NEt4)[(WCA-NHC)Rh(CO)2Cl] were prepared, with the latter allowing an assessment of the donor ability of the ligand by IR spectroscopy. The zwitterionic iridium-COD complexes were tested as catalysts for the homogeneous hydrogenation of alkenes, which can be performed in the presence of nonpolar solvents or in the neat alkene substrate. Thereby, the most active complex showed excellent stability and activity in hydrogenation of alkenes at low catalyst loadings (down to 10 ppm).

9.
Chemistry ; 19(34): 11382-95, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23843344

ABSTRACT

Reactions of BODIPY monomers with sulfur nucleophiles and electrophiles result in the formation of new BODIPY dimers. Mono- and disulfur bridges are established, and the new dyestuff molecules were studied with respect to their structural, optical, and electrochemical properties. X-ray diffraction analyses reveal individual angulated orientations of the BODIPY subunits in all cases. DFT calculations provide solution conformers of the DYEmers which deviate in a specific manner from the crystallographic results. Clear exciton-like splittings are observed in the absorption spectra, with maxima at up to 628 nm, in combination with the expected weak fluorescence in polar solvents. A strong communication between the BODIPY subunits was detected by cyclic voltammetry, where two separated one-electron oxidation and reduction waves with peak-to-peak potential differences of 120-400 mV are observed. The qualitative applicability of the exciton model by Kasha for the interpretation of the absorption spectral shape with respect to the conformational state, subunit orientation and distance, and conjugation through the different sulfur bridges, is discussed in detail for the new BODIPY derivatives. This work is part of our concept of DYEmers, where the covalent oligomerisation of BODIPY-type dye molecules with close distances is leading to new functional dyes with predictable properties.

10.
Chem Commun (Camb) ; 49(65): 7189-91, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23712543

ABSTRACT

The tungsten benzylidyne complex [PhC≡W{OSi(OtBu)3}3] (1) efficiently catalyses the metathetic conversion between symmetrical and unsymmetrical 1,3-diynes, which provides the opportunity to prepare the latter species directly from terminal alkynes by a combination of copper-catalysed homocoupling and catalytic alkyne cross-metathesis (ACM).

12.
J Phys Chem A ; 115(13): 2794-801, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21391690

ABSTRACT

A kinetic-energy-based fitting metric for application in the context of resolution of the identity second-order Møller-Plesset perturbation theory is presented, which is derived from the Poisson equation. Preliminary tests of the applicability include the evaluation of the error in the correlation energy, compared to standard Møller-Plesset perturbation theory, with respect to the auxiliary basis set employed. We comment on the potential merits of this fitting metric, compared to standard resolution of the identity second-order Møller-Plesset perturbation theory, and discuss its scaling behavior in the limit of large molecules.

13.
J Chem Theory Comput ; 7(2): 351-68, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-26596157

ABSTRACT

Here we present an efficient, yet nonlinear scaling, algorithm for the computation of Cholesky factors of sparse symmetric positive definite matrices and their inverses. The key feature of this implementation is the separation of the task into an algebraic and a numeric part. The algebraic part of the algorithm attempts to find a reordering of the rows and columns which preserves at least some degree of sparsity and afterward determines the exact nonzero structure of both the Cholesky factor and its corresponding inverse. It is based on graph theory and does not involve any kind of numerical thresholding. This preprocessing then allows for a very efficient implementation of the numerical factorization step. Furthermore this approach even allows use of highly optimized dense linear algebra kernels which leads to yet another performance boost. We will show some illustrative timings of our sparse code and compare it to the standard library implementation and a recent sparse implementation using thresholding. We conclude with some comments on how to deal with positive semidefinite matrices.

14.
Chemistry ; 16(29): 8868-77, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20572182

ABSTRACT

The reaction of [PhC[triple bond]MBr(3)(dme)] (dme=1,2-dimethoxyethane) with the hexafluoro-tert-butoxides LiX or KX [X=OC(CF(3))(2)Me] afforded the benzylidyne complexes [PhC[triple bond]MX(3)(dme)] (2a: M=W, 2b: M=Mo), which further reacted with the lithium reagent Li(Im(tBu)N), generated with MeLi from 1,3-di-tert-butylimidazolin-2-imine (Im(tBu)NH), to form the imidazolin-2-iminato complexes [PhC[triple bond]MX(2)(Im(tBu)N)] (3a: M=W, 3b: M=Mo). The propylidyne complex [EtC[triple bond]MoX(2)(NIm(tBu))] (4) was obtained by treatment of 3b with an excess of 3-hexyne. Complexes 3a and 3b are able to efficiently catalyse alkyne cross metathesis of various 3-pentynyl benzyl ethers 5 and benzoic esters 7 at room temperature, to afford 2-butyne and the corresponding diethers 6 and diesters 8. The tungsten complex 3a proved to be a superior catalyst for ring-closing alkyne metathesis, and the [10]cyclophanes 10 and 12 were synthesised in high yield from 1,3-bis(3-pentynyloxymethyl)benzene (9) and bis(3-pentynyl) phthalate (11), respectively. The molecular structures of compounds 2a, 2b, 3a, 3b, 4, and 12 were determined by single-crystal X-ray diffraction. DFT calculations have been carried out for catalyst systems based on the imidazolin-2-iminato tungsten and molybdenum complexes 3a and 3b by choosing the alkyne metathesis of 2-butyne as the model reaction; the studies revealed a lower activation barrier for the tungsten system.

15.
Beilstein J Org Chem ; 5: 31, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19597557

ABSTRACT

Treatment of benzanthrone (1) with biphenyl-2-yl lithium leads to the surprisingly stable enol 4, which is converted by dehydrogenation into the benzanthrone derivative 7. Under acidic conditions 4 isomerises to the spiro compound 11 and the bicyclo[4.3.1]decane derivative 12. Furthermore, the formation of 7 and the hydrogenated compound 13 is observed. A mechanism for the formation of the reaction products is proposed and supported by DFT calculations.

16.
Chem Soc Rev ; 37(8): 1558-67, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18648681

ABSTRACT

Knowledge about individual covalent or non-covalent bond strengths is the Holy Grail of many modern molecular sciences. Recent developments of new descriptors for such interaction strengths based on potential constants are summarised in this tutorial review. Several publications for and against the use of compliance matrices (inverse force constants matrix) have appeared in the literature in the last few years. However the mathematical basis for understanding, and therefore interpreting, compliance constants is still not well developed. We therefore summarise the theoretical foundations and point to the advantages and disadvantages of the use of force constants versus compliance constants for the description of both non-covalent and covalent interactions.

18.
Org Lett ; 10(5): 981-4, 2008 Mar 06.
Article in English | MEDLINE | ID: mdl-18251553

ABSTRACT

Room-temperature ring-closing alkyne metathesis of 1,2-, 1,3-, and 1,4-bis(3-pentynyloxymethyl)benzenes has been investigated in the presence of catalytic amounts of an imidazolin-2-iminato tungsten alkylidyne complex. The m- and p-diynes selectively form the respective [10]metacyclophane or [10.10]paracyclophane, respectively, whereas a mixture of monomeric and dimeric cycloalkynes is obtained in the case of the o-diyne. DFT calculations reveal that the different selectivities can be attributed to the relative thermodynamic stability of the emerging cyclophanes.

SELECTION OF CITATIONS
SEARCH DETAIL
...