Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Oecologia ; 204(2): 303-314, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37470872

ABSTRACT

Parasites can play key roles in ecosystems, especially when they infect common hosts that play important ecological roles. Daphnia are critical grazers in many lentic freshwater ecosystems and typically reach peak densities in early spring. Daphnia have also become prominent model host organisms for the field of disease ecology, although most well-studied parasites infect them in summer or fall. Here, we report field patterns of virulent microsporidian parasites that consistently infect Daphnia in springtime, in a set of seven shallow ponds in Georgia, USA, sampled every 3-4 weeks for 18 months. We detected two distinct parasite taxa, closely matching sequences of Pseudoberwaldia daphniae and Conglomerata obtusa, both infecting all three resident species of Daphnia: D. ambigua, D. laevis, and D. parvula. To our knowledge, neither parasite has been previously reported in any of these host species or anywhere in North America. Infection prevalence peaked consistently in February-May, but the severity of these outbreaks differed substantially among ponds. Moreover, host species differed markedly in terms of their maximum infection prevalence (5% [D. parvula] to 72% [D. laevis]), mean reduction of fecundity when infected (70.6% [D. ambigua] to 99.8% [D. laevis]), mean spore yield (62,000 [D. parvula] to 377,000 [D. laevis] per host), and likelihood of being infected by each parasite. The timing and severity of the outbreaks suggests that these parasites could be impactful members of these shallow freshwater ecosystems, and that the strength of their effects is likely to hinge on the composition of ponds' zooplankton communities.


Subject(s)
Microsporidia , Ponds , Animals , Ecosystem , Daphnia , Disease Outbreaks
3.
Front Endocrinol (Lausanne) ; 13: 892342, 2022.
Article in English | MEDLINE | ID: mdl-35757431

ABSTRACT

An in vitro system to study testicular maturation in rats, an important model organism for reproductive toxicity, could serve as a platform for high-throughput drug and toxicity screening in a tissue specific context. In vitro maturation of somatic cells and spermatogonia in organ culture systems has been reported. However, this has been a challenge for organoids derived from dissociated testicular cells. Here, we report generation and maintenance of rat testicular organoids in microwell culture for 28 days. We find that rat organoids can be maintained in vitro only at lower than ambient O2 tension of 15% and organoids cultured at 34°C have higher somatic cell maturation and spermatogonial differentiation potential compared to cultures in 37°C. Upon exposure to known toxicants, phthalic acid mono-2-ethylhexyl ester and cadmium chloride, the organoids displayed loss of tight-junction protein Claudin 11 and altered transcription levels of somatic cell markers that are consistent with previous reports in animal models. Therefore, the microwell-derived rat testicular organoids described here can serve as a novel platform for the study of testicular cell maturation and reproductive toxicity in vitro.


Subject(s)
Organoids , Spermatogonia , Animals , Cell Differentiation , Male , Rats , Spermatogonia/metabolism , Testis/metabolism
4.
Am J Primatol ; 83(10): e23324, 2021 10.
Article in English | MEDLINE | ID: mdl-34492124

ABSTRACT

In mammals, scent marking behavior is a pervasive form of chemical communication that regulates social interactions within and between groups. Glandular microbiota consist of bacterial communities capable of producing chemical cues used in olfactory communication. Despite countless studies on scent marking in primates, few have examined the microbiota associated with glandular secretions. Nancy Ma's owl monkeys (Aotus nancymaae) are nocturnal, socially monogamous primates that frequently scent mark using their subcaudal glands. Previous analyses revealed that unique chemical signatures of Aotus may convey information about sex and age. We used positive reinforcement to sample the subcaudal glands of 23 captive owl monkeys to describe their glandular microbiomes and examine how patterns in these bacterial communities vary with age, sex, rearing environment and/or social group (pair identity). We coupled these analyses with behavioral observations to examine patterns in their scent marking behavior. We isolated 31 bacterial species from Phyla Firmicutes, Proteobacteria, and Actinobacteria, consistent with the dermal and glandular microbiomes of other primates. Several bacterial taxa we identified produce volatile organic compounds, which may contribute to olfactory communication. These bacterial communities are best predicted by an interaction between sex, rearing environment and pair identity rather than any of these variables alone. Within mated pairs of A. nancymaae, males and females scent mark their nest boxes at similar frequencies. In some pairs, rates of scent marking by males and females fluctuated over time in a similar manner. Pairs that had been together longer tended to exhibit the greatest similarities in their rates of scent marking. Together, these findings suggest that scent marking behavior and close social interactions with pair mates in Aotus may influence bacterial transmission and their glandular microbiomes. Chemical communication, including coordinated scent marking, may play a role in strengthening pair bonds, signaling pair status and/or in mate guarding in this socially monogamous primate.


Subject(s)
Aotidae , Microbiota , Animals , Female , Male , Odorants , Pair Bond , Pheromones
5.
J Neurophysiol ; 120(4): 1461-1471, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29873611

ABSTRACT

The pedal ganglion of the nudibranch gastropod Tritonia diomedea has been the focus of neurophysiological studies for more than 50 yr. These investigations have examined the neural basis of behaviors as diverse as swimming, crawling, reflex withdrawals, orientation to water flow, orientation to the earth's magnetic field, and learning. Despite this sustained research focus, most studies have confined themselves to the layer of neurons that are visible on the ganglion surface, leaving many neurons, which reside in deeper layers, largely unknown and thus unstudied. To facilitate work on such neurons, the present study used serial-section light microscopy to generate a detailed pictorial atlas of the pedal ganglion. One pedal ganglion was sectioned horizontally at 2-µm intervals and another vertically at 5-µm intervals. The resulting images were examined separately or combined into stacks to generate movie tours through the ganglion. These were also used to generate 3D reconstructions of individual neurons and rotating movies of digitally desheathed whole ganglia to reveal all surface neurons. A complete neuron count of the horizontally sectioned ganglion yielded 1,885 neurons. Real and virtual sections from the image stacks were used to reveal the morphology of individual neurons, as well as the major axon bundles traveling within the ganglion to and between its several nerves and connectives. Extensive supplemental data are provided, as well as a link to the Dryad Data Repository site, where the complete sets of high-resolution serial-section images can be downloaded. NEW & NOTEWORTHY Because of the large size and relatively low numbers of their neurons, gastropod mollusks are widely used for investigations of the neural basis of behavior. Most studies, however, focus on the neurons visible on the ganglion surface, leaving the majority, located out of sight below the surface, unexamined. The present light microscopy study generates the first detailed visual atlas of all neurons of the highly studied Tritonia pedal ganglion.


Subject(s)
Ganglia, Invertebrate/cytology , Neurons/cytology , Tritonia Sea Slug/cytology , Animals , Imaging, Three-Dimensional
6.
J Mol Evol ; 84(1): 12-28, 2017 01.
Article in English | MEDLINE | ID: mdl-28004131

ABSTRACT

Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron-exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.


Subject(s)
Gene Duplication/genetics , Opsins/genetics , Animals , Biological Evolution , Daphnia/genetics , Databases, Protein , Evolution, Molecular , Genetic Variation/genetics , Genome/genetics , Introns/genetics , Phylogeny
7.
PLoS Genet ; 12(12): e1006466, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27935966

ABSTRACT

Human genome-wide association studies (GWAS) have shown that genetic variation at >130 gene loci is associated with type 2 diabetes (T2D). We asked if the expression of the candidate T2D-associated genes within these loci is regulated by a common locus in pancreatic islets. Using an obese F2 mouse intercross segregating for T2D, we show that the expression of ~40% of the T2D-associated genes is linked to a broad region on mouse chromosome (Chr) 2. As all but 9 of these genes are not physically located on Chr 2, linkage to Chr 2 suggests a genomic factor(s) located on Chr 2 regulates their expression in trans. The transcription factor Nfatc2 is physically located on Chr 2 and its expression demonstrates cis linkage; i.e., its expression maps to itself. When conditioned on the expression of Nfatc2, linkage for the T2D-associated genes was greatly diminished, supporting Nfatc2 as a driver of their expression. Plasma insulin also showed linkage to the same broad region on Chr 2. Overexpression of a constitutively active (ca) form of Nfatc2 induced ß-cell proliferation in mouse and human islets, and transcriptionally regulated more than half of the T2D-associated genes. Overexpression of either ca-Nfatc2 or ca-Nfatc1 in mouse islets enhanced insulin secretion, whereas only ca-Nfatc2 was able to promote ß-cell proliferation, suggesting distinct molecular pathways mediating insulin secretion vs. ß-cell proliferation are regulated by NFAT. Our results suggest that many of the T2D-associated genes are downstream transcriptional targets of NFAT, and may act coordinately in a pathway through which NFAT regulates ß-cell proliferation in both mouse and human islets.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Insulin/genetics , NFATC Transcription Factors/genetics , Animals , Cell Proliferation/genetics , Chromosome Mapping , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Gene Expression Regulation , Genetic Linkage , Genome , Genome-Wide Association Study , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Mice , Mice, Obese , NFATC Transcription Factors/biosynthesis , Promoter Regions, Genetic
8.
PLoS One ; 10(12): e0145870, 2015.
Article in English | MEDLINE | ID: mdl-26713869

ABSTRACT

The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the alteration and transition of C. elegans locomotory behavior in a food-deprived condition.


Subject(s)
Behavior, Animal , Caenorhabditis elegans/physiology , Locomotion , Programming Languages , Algorithms , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Food , Mutation
9.
Proteins ; 83(8): 1427-35, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25973843

ABSTRACT

Using the semiempirical method PM7, an attempt has been made to quantify the error in prediction of the in vivo structure of proteins relative to X-ray structures. Three important contributory factors are the experimental limitations of X-ray structures, the difference between the crystal and solution environments, and the errors due to PM7. The geometries of 19 proteins from the Protein Data Bank that had small R values, that is, high accuracy structures, were optimized and the resulting drop in heat of formation was calculated. Analysis of the changes showed that about 10% of this decrease in heat of formation was caused by faults in PM7, the balance being attributable to the X-ray structure and the difference between the crystal and solution environments. A previously unknown fault in PM7 was revealed during tests to validate the geometries generated using PM7. Clashscores generated by the Molprobity molecular mechanics structure validation program showed that PM7 was predicting unrealistically close contacts between nonbonding atoms in regions where the local geometry is dominated by very weak noncovalent interactions. The origin of this fault was traced to an underestimation of the core-core repulsion between atoms at distances smaller than the equilibrium distance.


Subject(s)
Computational Biology/methods , Models, Molecular , Protein Conformation , Proteins/chemistry , Crystallography, X-Ray , Databases, Protein , Reproducibility of Results , Thermodynamics
10.
J Mol Model ; 21(1): 3, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25605595

ABSTRACT

An accurate model of three-dimensional protein structure is important in a variety of fields such as structure-based drug design and mechanistic studies of enzymatic reactions. While the entries in the Protein Data Bank ( http://www.pdb.org ) provide valuable information about protein structures, a small fraction of the PDB structures were found to contain anomalies not reported in the PDB file. The semiempirical PM7 method in MOPAC2012 was used for identifying anomalously short hydrogen bonds, C-H⋯O/C-H⋯N interactions, non-bonding close contacts, and unrealistic covalent bond lengths in recently published Protein Data Bank files. It was also used to generate new structures with these faults removed. When the semiempirical models were compared to those of PDB_REDO (http://www.cmbi.ru.nl/pdb_redo/), the clashscores, as defined by MolProbity ( http://molprobity.biochem.duke.edu/), were better in about 50% of the structures. The semiempirical models also had a lower root-mean-square-deviation value in nearly all cases than those from PDB_REDO, indicative of a better conservation of the tertiary structure. Finally, the semiempirical models were found to have lower clashscores than the initial PDB file in all but one case. Because this approach maintains as much of the original tertiary structure as possible while improving anomalous interactions, it should be useful to theoreticians, experimentalists, and crystallographers investigating the structure and function of proteins.


Subject(s)
Databases, Protein , Models, Molecular , Proteins/chemistry , Hydrogen Bonding , Protein Conformation
11.
Article in English | MEDLINE | ID: mdl-24865992

ABSTRACT

Eye size is an indicator of visual capability, and macroevolutionary patterns reveal that taxa inhabiting dim environments have larger eyes than taxa from bright environments. This suggests that the light environment is a key driver of variation in eye size. Yet other factors not directly linked with visual tasks (i.e., non-sensory factors) may influence eye size. We sought to jointly investigate the roles of sensory (light) and non-sensory factors (food) in determining eye size and ask whether non-sensory factors could constrain visual capabilities. We tested environmental influences on eye size in four species of the freshwater crustacean Daphnia, crossing bright and dim light levels with high and low resource levels. We measured absolute eye size and eye size relative to body size in early and late adulthood. In general, Daphnia reared on low resources had smaller eyes, both absolutely and relatively. In contrast to the dominant macroevolutionary pattern, phenotypic plasticity in response to light was rarely significant. These patterns of phenotypic plasticity were true for overall diameter of the eye and the diameter of individual facets. We conclude that non-sensory environmental factors can influence sensory systems, and in particular, that resource availability may be an important constraint on visual capability.


Subject(s)
Daphnia/anatomy & histology , Daphnia/physiology , Ecology , Environment , Eye/anatomy & histology , Vision, Ocular/physiology , Age Factors , Analysis of Variance , Animals , Body Size , Female , Male , Organ Size , Photic Stimulation
12.
Ecol Evol ; 2(2): 329-40, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22423327

ABSTRACT

Consumer-resource interactions are a central issue in evolutionary and community ecology because they play important roles in selection and population regulation. Most consumers encounter resource variation at multiple scales, and respond through phenotypic plasticity in the short term or evolutionary divergence in the long term. The key traits for these responses may influence resource acquisition, assimilation, and/or allocation. To identify relevant candidate genes, we experimentally assayed genome-wide gene expression in pond and lake Daphnia ecotypes exposed to alternate resource environments. One was a simple, high-quality laboratory diet, Ankistrodesmus falcatus. The other was the complex natural seston from a large lake. In temporary ponds, Daphnia generally experience high-quality, abundant resources, whereas lakes provide low-quality, seasonally shifting resources that are chronically limiting. For both ecotypes, we used replicate clones drawn from a number of separate populations. Fourteen genes were differentially regulated with respect to resources, including genes involved in gut processes, resource allocation, and activities with no obvious connection to resource exploitation. Three genes were differentially regulated in both ecotypes; the others may play a role in ecological divergence. Genes clearly linked to gut processes include two peritrophic matrix proteins, a Niemann-Pick type C2 gene, and a chymotrypsin. A pancreatic lipase, an epoxide hydrolase, a neuroparsin, and an UDP-dependent glucuronyltransferase are potentially involved in resource allocation through effects on energy processing and storage or hormone pathways. We performed quantitative rt-PCR for eight genes in independent samples of three clones of each of the two ecotypes. Though these largely confirmed observed differential regulation, some genes' expression was highly variable among clones. Our results demonstrate the value of matching the level of biological replication in genome-wide assays to the question, as it gave us insight into ecotype-level responses at ecological and evolutionary scales despite substantial variation within ecotypes.

13.
J Neurosci Methods ; 162(1-2): 148-54, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17306887

ABSTRACT

Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations.


Subject(s)
Microscopy/instrumentation , Nerve Net/physiology , Animals , Electrodes , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Microscopy/methods , Motor Neurons/physiology , Tritonia Sea Slug/cytology , Tritonia Sea Slug/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...