Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Muscle Nerve ; 63(4): 608-616, 2021 04.
Article in English | MEDLINE | ID: mdl-33382107

ABSTRACT

BACKGROUND: Collagen VI related myopathies are congenital diseases of variable phenotype. The severe phenotype is referred to as Ullrich congenital muscular dystrophy. In this study, we describe analoguos clinical signs and histopathological alterations in Landseer dogs. MATERIALS: We collected clinical data from two affected dogs and investigated the neuromuscular changes in five dogs from two different litters with immunohistochemistry and immunofluorescence. All affected dogs were homozygous for the p.Glu97* nonsense variant in the COL6A1 gene encoding the alpha-1 chain of collagen VI. RESULTS: Muscle biopsies revealed alterations similar to those in human patients with Ullrich congenital muscular dystrophy including the virtual absence of collagen VI in skeletal muscles. CONCLUSIONS: The clinical and pathological characterization of the affected Landseer dogs enhances the value of this animal model for human Ullrich congenital muscular dystrophy.


Subject(s)
Fibroblasts/pathology , Muscle, Skeletal/pathology , Muscular Dystrophies/metabolism , Sclerosis/pathology , Animals , Collagen Type VI/genetics , Collagen Type VI/metabolism , Dogs , Homozygote , Muscle, Skeletal/metabolism , Muscular Dystrophies/congenital , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Mutation/genetics , Phenotype , Sclerosis/genetics
2.
Doc Ophthalmol ; 135(3): 209-218, 2017 12.
Article in English | MEDLINE | ID: mdl-28980154

ABSTRACT

PURPOSE: Objective assessment of visual acuity (VA) is possible with VEP methodology, but established with sufficient precision only for vision better than about 1.0 logMAR. We here explore whether this can be extended down to 2.0 logMAR, highly desirable for low-vision evaluations. METHODS: Based on the stepwise sweep algorithm (Bach et al. in Br J Ophthalmol 92:396-403, 2008) VEPs to monocular steady-state brief onset pattern stimulation (7.5-Hz checkerboards, 40% contrast, 40 ms on, 93 ms off) were recorded for eight different check sizes, from 0.5° to 9.0°, for two runs with three occipital electrodes in a Laplace-approximating montage. We examined 22 visually normal participants where acuity was reduced to ≈ 2.0 logMAR with frosted transparencies. With the established heuristic algorithm the "VEP acuity" was extracted and compared to psychophysical VA, both obtained at 57 cm distance. RESULTS: In 20 of the 22 participants with artificially reduced acuity the automatic analysis indicated a valid result (1.80 logMAR on average) in at least one of the two runs. 95% test-retest limits of agreement on average were ± 0.09 logMAR for psychophysical, and ± 0.21 logMAR for VEP-derived acuity. For 15 participants we obtained results in both runs and averaged them. In 12 of these 15 the low-acuity results stayed within the 95% confidence interval (± 0.3 logMAR) as established by Bach et al. (2008). CONCLUSIONS: The fully automated analysis yielded good agreement of psychophysical and electrophysiological VAs in 12 of 15 cases (80%) in the low-vision range down to 2.0 logMAR. This encourages us to further pursue this methodology and assess its value in patients.


Subject(s)
Evoked Potentials, Visual/physiology , Vision Tests/methods , Vision, Low/diagnosis , Visual Acuity/physiology , Adult , Electrodes , Female , Fourier Analysis , Humans , Male , Psychophysics , Young Adult
3.
G3 (Bethesda) ; 5(12): 2611-7, 2015 Oct 04.
Article in English | MEDLINE | ID: mdl-26438297

ABSTRACT

A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy.


Subject(s)
Codon, Nonsense , Collagen Type VI/genetics , Muscular Dystrophies/genetics , Animals , Chromosome Mapping , DNA Mutational Analysis , Disease Models, Animal , Dogs , Female , Genetic Association Studies , Genetic Linkage , Genome , High-Throughput Nucleotide Sequencing , Homozygote , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...