Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Prion ; 14(1): 214-225, 2020 12.
Article in English | MEDLINE | ID: mdl-32835598

ABSTRACT

Chronic wasting disease (CWD) is caused by prions, infectious proteinaceous particles, PrPCWD. We sequenced the PRNP gene of 2,899 white-tailed deer (WTD) from Illinois and southern Wisconsin, finding 38 haplotypes. Haplotypes A, B, D, E, G and 9 others encoded Q95G96S100N103A123Q226, designated 'PrP variant A.' Haplotype C and 4 other haplotypes encoded PrP 'variant C' (Q95S96S100N103A123Q226). Haplotype F and two other haplotypes encoded PrP 'variant F' (H95G96S100N103A123Q226). The association of CWD with encoded PrP variants was examined in 2,537 tested WTD from counties with CWD. Relative to PrP variant A, CWD susceptibility was lower in deer with PrP variant C (OR = 0.26, p < 0.001), and even lower in deer with PrP variant F (OR = 0.10, p < 0.0001). Susceptibility to CWD was highest in deer with both chromosomes encoding PrP variant A, lower with one copy encoding PrP variant A (OR = 0.25, p < 0.0001) and lowest in deer without PrP variant A (OR = 0.07, p < 0.0001). There appeared to be incomplete dominance for haplotypes encoding PrP variant C in reducing CWD susceptibility. Deer with both chromosomes encoding PrP variant F (FF) or one encoding PrP variant C and the other F (CF) were all CWD negative. Our results suggest that an increased population frequency of PrP variants C or F and a reduced frequency of PrP variant A may reduce the risk of CWD infection. Understanding the population and geographic distribution of PRNP polymorphisms may be a useful tool in CWD management.


Subject(s)
Deer/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Prion Proteins/genetics , Wasting Disease, Chronic/genetics , Amino Acid Sequence , Animals , Prion Proteins/chemistry
2.
J Hered ; 110(7): 761-768, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31674643

ABSTRACT

Illegal hunting is a major threat to the elephants of Africa, with more elephants killed by poachers than die from natural causes. DNA from tusks has been used to infer the source populations for confiscated ivory, relying on nuclear genetic markers. However, mitochondrial DNA (mtDNA) sequences can also provide information on the geographic origins of elephants due to female elephant philopatry. Here, we introduce the Loxodonta Localizer (LL; www.loxodontalocalizer.org), an interactive software tool that uses a database of mtDNA sequences compiled from previously published studies to provide information on the potential provenance of confiscated ivory. A 316 bp control region sequence, which can be readily generated from DNA extracted from ivory, is used as a query. The software generates a listing of haplotypes reported among 1917 African elephants in 24 range countries, sorted in order of similarity to the query sequence. The African locations from which haplotype sequences have been previously reported are shown on a map. We demonstrate examples of haplotypes reported from only a single locality or country, examine the utility of the program in identifying elephants from countries with varying degrees of sampling, and analyze batches of confiscated ivory. The LL allows for the source of confiscated ivory to be assessed within days, using widely available molecular methods that do not depend on a particular platform or laboratory. The program enables identification of potential regions or localities from which elephants are being poached, with capacity for rapid identification of populations newly or consistently targeted by poachers.


Subject(s)
DNA, Mitochondrial , Elephants/genetics , Software , Web Browser , Africa , Animals , Animals, Wild , Computational Biology/methods , Conservation of Natural Resources , Elephants/classification , Forensic Genetics , Genetic Markers , Haplotypes , Population Dynamics
3.
Vet Med (Auckl) ; 10: 123-139, 2019.
Article in English | MEDLINE | ID: mdl-31632898

ABSTRACT

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that affects members of the cervidae family. The infectious agent is a misfolded isoform (PrPSC) of the host prion protein (PrPC). The replication of PrPSC initiates a cascade of developmental changes that spread from cell to cell, individual to individual, and that for some TSEs, has crossed the species barrier. CWD can be transmitted horizontally and vertically, and it is the only TSE that affects free-ranging wildlife. While other TSEs are under control and even declining, infection rates of CWD continue to grow and the disease distribution continues to expand in North America and around the world. Since the first reported case in 1967, CWD has spread infecting captive and free-ranging cervids in 26 states in the US, 3 Canadian provinces, 3 European countries and has been found in captive cervids in South Korea. CWD causes considerable ecologic, economic and sociologic impact, as this is a 100% fatal highly contagious infectious disease, with no treatment or cure available. Because some TSEs have crossed the species barrier, the zoonotic potential of CWD is a concern for human health and continues to be investigated. Here we review the characteristics of the CWD prion protein, mechanisms of transmission and the role of genetics. We discuss the characteristics that contribute to prevalence and distribution. We also discuss the impact of CWD and review the management strategies that have been used to prevent and control the spread of CWD.

4.
Prion ; 12(3-4): 204-215, 2018.
Article in English | MEDLINE | ID: mdl-30041562

ABSTRACT

Managing and controlling the spread of diseases in wild animal populations is challenging, especially for social and mobile species. Effective management benefits from information about disease susceptibility, allowing limited resources to be focused on areas or populations with a higher risk of infection. Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that affects cervids, was detected in Colorado in the late 1960s. CWD was detected in Illinois and Wisconsin in 2002 and has since spread through many counties. Specific nucleotide variations in the prion protein gene (PRNP) sequence have been associated with reduced susceptibility to CWD in white-tailed deer. Though genetic resistance is incomplete, the frequency of deer possessing these mutations in a population is an important factor in disease spread (i.e. herd immunity). In this study we sequenced 625 bp of the PRNP gene from a sampling of 2433 deer from Illinois and Wisconsin. In north-central Illinois where CWD was first detected, counties had a low frequency of protective haplotypes (frequency <0.20); whereas in northwestern Illinois counties, where CWD cases have only more recently been detected, the frequency of protective haplotypes (frequency >0.30) was much higher (p < 0.05). Protective haplotype frequencies varied significantly among infected and uninfected geographic areas. The frequency of protective PRNP haplotypes may contribute to population level susceptibility and may shape the way CWD has spread through Illinois. Analysis of PRNP haplotype distribution could be a useful tool to assess CWD risk and allocate resources to contain and reduce the spread of infection.


Subject(s)
Prion Proteins/genetics , Wasting Disease, Chronic/genetics , Animals , Deer , Haplotypes/genetics
5.
Gigascience ; 7(6)2018 06 01.
Article in English | MEDLINE | ID: mdl-29718205

ABSTRACT

Solenodons are insectivores that live in Hispaniola and Cuba. They form an isolated branch in the tree of placental mammals that are highly divergent from other eulipothyplan insectivores The history, unique biology, and adaptations of these enigmatic venomous species could be illuminated by the availability of genome data. However, a whole genome assembly for solenodons has not been previously performed, partially due to the difficulty in obtaining samples from the field. Island isolation and reduced numbers have likely resulted in high homozygosity within the Hispaniolan solenodon (Solenodon paradoxus). Thus, we tested the performance of several assembly strategies on the genome of this genetically impoverished species. The string graph-based assembly strategy seemed a better choice compared to the conventional de Bruijn graph approach due to the high levels of homozygosity, which is often a hallmark of endemic or endangered species. A consensus reference genome was assembled from sequences of 5 individuals from the southern subspecies (S. p. woodi). In addition, we obtained an additional sequence from 1 sample of the northern subspecies (S. p. paradoxus). The resulting genome assemblies were compared to each other and annotated for genes, with an emphasis on venom genes, repeats, variable microsatellite loci, and other genomic variants. Phylogenetic positioning and selection signatures were inferred based on 4,416 single-copy orthologs from 10 other mammals. We estimated that solenodons diverged from other extant mammals 73.6 million years ago. Patterns of single-nucleotide polymorphism variation allowed us to infer population demography, which supported a subspecies split within the Hispaniolan solenodon at least 300 thousand years ago.


Subject(s)
Biological Evolution , Conserved Sequence/genetics , Endangered Species , Islands , Mammals/genetics , Sequence Analysis, DNA/methods , Animals , Cuba , Genome , Heterozygote , Species Specificity
6.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(5): 662-670, 2017 09.
Article in English | MEDLINE | ID: mdl-27159724

ABSTRACT

Solenodons are insectivores found only in Hispaniola and Cuba, with a Mesozoic divergence date versus extant mainland mammals. Solenodons are the oldest lineage of living eutherian mammal for which a mitogenome sequence has not been reported. We determined complete mitogenome sequences for six Hispaniolan solenodons (Solenodon paradoxus) using next-generation sequencing. The solenodon mitogenomes were 16,454-16,457 bp long and carried the expected repertoire of genes. A mitogenomic phylogeny confirmed the basal position of solenodons relative to shrews and moles, with solenodon mitogenomes estimated to have diverged from those of other mammals ca. 78 Mya. Control region sequences of solenodons from the northern (n = 3) and southern (n = 5) Dominican Republic grouped separately in a network, with FST = 0.72 (p = 0.036) between north and south. This regional genetic divergence supports previous morphological and genetic reports recognizing northern (S. p. paradoxus) and southern (S. p. woodi) subspecies in need of separate conservation plans.


Subject(s)
Eulipotyphla/classification , High-Throughput Nucleotide Sequencing/methods , Mitochondria/genetics , Sequence Analysis, DNA/methods , Animals , Eulipotyphla/genetics , Evolution, Molecular , Genome Size , Genome, Mitochondrial , Phylogeny
7.
Prion ; 9(6): 449-62, 2015.
Article in English | MEDLINE | ID: mdl-26634768

ABSTRACT

The sequence of the prion protein gene (PRNP) affects susceptibility to spongiform encephalopathies, or prion diseases in many species. In white-tailed deer, both coding and non-coding single nucleotide polymorphisms have been identified in this gene that correlate to chronic wasting disease (CWD) susceptibility. Previous studies examined individual nucleotide or amino acid mutations; here we examine all nucleotide polymorphisms and their combined effects on CWD. A 626 bp region of PRNP was examined from 703 free-ranging white-tailed deer. Deer were sampled between 2002 and 2010 by hunter harvest or government culling in Illinois and Wisconsin. Fourteen variable nucleotide positions were identified (4 new and 10 previously reported). We identified 68 diplotypes comprised of 24 predicted haplotypes, with the most common diplotype occurring in 123 individuals. Diplotypes that were found exclusively among positive or negative animals were rare, each occurring in less than 1% of the deer studied. Only one haplotype (C, odds ratio 0.240) and 2 diplotypes (AC and BC, odds ratios of 0.161 and 0.108 respectively) has significant associations with CWD resistance. Each contains mutations (one synonymous nucleotide 555C/T and one nonsynonymous nucleotide 286G/A) at positions reported to be significantly associated with reduced CWD susceptibility. Results suggest that deer populations with higher frequencies of haplotype C or diplotypes AC and BC might have a reduced risk for CWD infection--while populations with lower frequencies may have higher risk for infection. Understanding the genetic basis of CWD has improved our ability to assess herd susceptibility and direct management efforts within CWD infected areas.


Subject(s)
Deer/genetics , Prions/genetics , Wasting Disease, Chronic/genetics , Animals
8.
Annu Rev Anim Biosci ; 3: 139-67, 2015.
Article in English | MEDLINE | ID: mdl-25493538

ABSTRACT

We review DNA-based studies of elephants and recently extinct proboscideans. The evidence indicates that little or no nuclear gene flow occurs between African savanna elephants (Loxodonta africana) and African forest elephants (Loxodonta cyclotis), establishing that they comprise separate species. In all elephant species, males disperse, whereas females remain with their natal social group, leading to discordance in the phylogeography of nuclear and mitochondrial DNA patterns. Improvements in ancient DNA methods have permitted sequences to be generated from an increasing number of proboscidean fossils and have definitively established that the Asian elephant (Elephas maximus) is the closest living relative of the extinct woolly mammoth (Mammuthus primigenius). DNA-based methods have been developed to determine the geographic provenance of confiscated ivory in an effort to aid the conservation of elephants.


Subject(s)
Elephants/genetics , Genome , Animals , DNA/genetics , Elephants/classification , Female , Fossils , Genomics , Male , Mammoths/genetics , Phylogeography , Species Specificity
9.
J Hered ; 105(1): 82-90, 2014.
Article in English | MEDLINE | ID: mdl-24285829

ABSTRACT

Eritrea has one of the northernmost populations of African elephants. Only about 100 elephants persist in the Gash-Barka administrative zone. Elephants in Eritrea have become completely isolated, with no gene flow from other elephant populations. The conservation of Eritrean elephants would benefit from an understanding of their genetic affinities to elephants elsewhere on the continent and the degree to which genetic variation persists in the population. Using dung samples from Eritrean elephants, we examined 18 species-diagnostic single nucleotide polymorphisms in 3 nuclear genes, sequences of mitochondrial HVR1 and ND5, and genotyped 11 microsatellite loci. The sampled Eritrean elephants carried nuclear and mitochondrial DNA markers establishing them as savanna elephants, with closer genetic affinity to Eastern than to North Central savanna elephant populations, and contrary to speculation by some scholars that forest elephants were found in Eritrea. Mitochondrial DNA diversity was relatively low, with 2 haplotypes unique to Eritrea predominating. Microsatellite genotypes could only be determined for a small number of elephants but suggested that the population suffers from low genetic diversity. Conservation efforts should aim to protect Eritrean elephants and their habitat in the short run, with restoration of habitat connectivity and genetic diversity as long-term goals.


Subject(s)
DNA, Mitochondrial/isolation & purification , Elephants/genetics , Genetic Variation , Animals , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Ecosystem , Eritrea , Genetic Loci , Genetic Markers , Genotype , Haplotypes , Microsatellite Repeats , Phylogeography , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Trees
10.
J Hered ; 105(1): 39-47, 2014.
Article in English | MEDLINE | ID: mdl-24154534

ABSTRACT

Populations of North American river otters (Lontra canadensis) declined throughout large portions of the continent during the early 1900s due to habitat degradation and unregulated trapping. River otters had been extirpated in North Dakota (ND), but the Red River Valley has since been recolonized, with potential source populations including the neighboring states of Minnesota or South Dakota, or the Canadian province of Manitoba (MB). We genotyped 9 microsatellite loci in 121 samples to determine the source population of river otters in the Red River Valley of ND, as well as to assess population structure and diversity of river otters in central North America. Overall, genetic diversity was high, with an average observed heterozygosity of 0.58. Genetic differentiation was low (F ST < 0.05) between river otters in ND and those of Minnesota, suggesting that eastern ND was recolonized by river otters from Minnesota. River otters from MB were genetically distinct from all other sampled populations. Low genetic differentiation (F ST = 0.044) between South Dakota and Louisiana (LA) suggested that reintroductions using LA stock were successful. The genetic distinctiveness of river otters from different geographic regions should be considered when deciding on source populations for future translocations.


Subject(s)
Genetic Variation , Genetics, Population , Otters/classification , Otters/genetics , Animals , Ecosystem , Genetic Loci , Linkage Disequilibrium , Microsatellite Repeats/genetics , North America , Phylogeography , Rivers
11.
Mol Ecol ; 21(5): 1175-89, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22260276

ABSTRACT

Among elephants, the phylogeographic patterns of mitochondrial (mt) and nuclear markers are often incongruent. One hypothesis attributes this to sex differences in dispersal and in the variance of reproductive success. We tested this hypothesis by examining the coalescent dates of genetic markers within elephantid lineages, predicting that lower dispersal and lower variance in reproductive success among females would have increased mtDNA relative to nuclear coalescent dates. We sequenced the mitochondrial genomes of two forest elephants, aligning them to mitogenomes of African savanna and Asian elephants, and of woolly mammoths, including the most divergent mitogenomes within each lineage. Using fossil calibrations, the divergence between African elephant F and S clade mitochondrial genomes (originating in forest and savanna elephant lineages, respectively) was estimated as 5.5 Ma. We estimated that the (African) ancestor of the mammoth and Asian elephant lineages diverged 6.0 Ma, indicating that four elephantid lineages had differentiated in Africa by the Miocene-Pliocene transition, concurrent with drier climates. The coalescent date for forest elephant mtDNAs was c. 2.4 Ma, suggesting that the decrease in tropical forest cover during the Pleistocene isolated distinct African forest elephant lineages. For all elephantid lineages, the ratio of mtDNA to nuclear coalescent dates was much greater than 0.25. This is consistent with the expectation that sex differences in dispersal and in variance of reproductive success would have increased the effective population size of mtDNA relative to nuclear markers in elephantids, contributing to the persistence of incongruent mtDNA phylogeographic patterns.


Subject(s)
Climate , Elephants/genetics , Evolution, Molecular , Genome, Mitochondrial , Africa , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Elephants/classification , Female , Fossils , Male , Mammoths , Molecular Sequence Data , Phylogeny , Phylogeography , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...