Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 98(3): 1928-37, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25622867

ABSTRACT

The objective of this experiment was to determine the effects of differing ratios of forage to concentrate (F:C) and fiber levels on odor and gas emissions from manure. Eight Holstein dairy heifers (362.45±4.53 d of age and 335.6±7.41 kg of body weight) were randomly assigned to a split-plot, 4×4 Latin square design (21-d periods) with F:C as the whole plot (20 or 80% forage) and fiber level as sub-plot (0, 20, 40, or 60% inclusion of corn stover). Gas concentration was determined using an infrared photoacoustic analyzer over a 24-h period using a steady-state flux chamber setup. Odorous air samples were collected from chamber headspace and evaluated by 6 human assessors using a forced-choice dynamic olfactometry technique. Emissions of CO2 were greater for the low than high concentrate diets, and no differences were observed for NH3 and CH4 emissions between F:C. Although F:C had no effect on NH3 emissions, as dietary fiber increased, a linear interaction with opposite effects was found for high and low concentrate diets. Nitrous oxide emissions were below minimum detectable levels. Neither F:C nor neutral detergent fiber level affected odor intensity. Odor emissions were successfully assessed, and manipulation of dietary fiber has the potential to influence CH4 and NH3 emissions.


Subject(s)
Animal Feed , Cattle/metabolism , Dietary Fiber/administration & dosage , Manure/analysis , Methane/analysis , Odorants/analysis , Ammonia/analysis , Animals , Carbon Dioxide/analysis , Diet/veterinary , Dietary Fiber/metabolism , Female , Humans , Hydrogen-Ion Concentration , Olfactometry/methods , Zea mays
2.
J Dairy Sci ; 96(2): 1189-202, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23245964

ABSTRACT

This experiment investigated the effects of dietary supplementation of Origanum vulgare L. leaf material (OR) on rumen fermentation, production, and milk fatty acid composition in dairy cows. The experimental design was a replicated 4 × 4 Latin square with 8 rumen-cannulated Holstein cows and 20-d experimental periods. Treatments were control (no OR supplementation), 250 g/cow per day OR (LOR), 500 g/d OR (MOR), and 750 g/d OR (HOR). Oregano supplementation had no effect on rumen pH, volatile fatty acid concentrations, and estimated microbial protein synthesis, but decreased ammonia concentration and linearly decreased methane production per unit of dry matter intake (DMI) compared with the unsupplemented control: 18.2, 16.5, 11.7, and 13.6g of methane/kg of DMI, respectively. Proportions of rumen bacterial, methanogen, and fungal populations were not affected by treatment. Treatment had no effect on total-tract apparent digestibility of dietary nutrients, except neutral detergent fiber digestibility was slightly decreased by all OR treatments compared with the control. Urinary N losses and manure odor were not affected by OR, except the proportion of urinary urea N in the total excreted urine N tended to be decreased compared with the control. Oregano linearly decreased DMI (28.3, 28.3, 27.5, and 26.7 kg/d for control, LOR, MOR, and HOR, respectively). Milk yield was not affected by treatment: 43.4, 45.2, 44.1, and 43.4 kg/d, respectively. Feed efficiency was linearly increased with OR supplementation and was greater than the control (1.46, 1.59, 1.60, and 1.63 kg/kg, respectively). Milk composition was unaffected by OR, except milk urea-N concentration was decreased. Milk fatty acid composition was not affected by treatment. In this short-term study, OR fed at 250 to 750 g/d decreased rumen methane production in dairy cows within 8h after feeding, but the effect over a 24-h feeding cycle has not been determined. Supplementation of the diet with OR linearly decreased DMI and increased feed efficiency. Oregano had no effects on milk fatty acid composition.


Subject(s)
Fatty Acids/analysis , Fermentation/drug effects , Lactation/drug effects , Milk/chemistry , Origanum , Rumen/drug effects , Animal Feed , Animals , Cattle , Dietary Supplements , Female , Lactation/physiology , Plant Leaves , Rumen/physiology
3.
J Environ Qual ; 40(2): 431-7, 2011.
Article in English | MEDLINE | ID: mdl-21520750

ABSTRACT

Surface application of manure in reduced tillage systems generates nuisance odors, but their management is hindered by a lack of standardized field quantification methods. An investigation was undertaken to evaluate odor emissions associated with various technologies that incorporate manure with minimal soil disturbance. Dairy manure slurry was applied by five methods in a 3.5-m swath to grassland in 61-m-inside-diameter rings. Nasal Ranger Field Olfactometer (NRO) instruments were used to collect dilutions-to-threshold (D/T) observations from the center of each ring using a panel of four odor assessors taking four readings each over a 10-min period. The Best Estimate Threshold D/T (BET10) was calculated for each application method and an untreated control based on preapplication and <1 h, 2 to 4 h, and approximately 24 h after spreading. Whole-air samples were simultaneously collected for laboratory dynamic olfactometer evaluation using the triangular forced-choice (TFC) method. The BET10 of NRO data composited for all measurement times showed D/T decreased in the following order (a = 0.05): surface broadcast > aeration infiltration > surface + chisel incorporation > direct ground injection Sshallow disk injection > control, which closely followed laboratory TFC odor panel results (r = 0.83). At 24 h, odor reduction benefits relative to broadcasting persisted for all methods except aeration infiltration, and odors associated with direct ground injection were not different from the untreated control. Shallow disk injection provided substantial odor reduction with familiar toolbar equipment that is well adapted to regional soil conditions and conservation tillage operations.


Subject(s)
Agriculture/methods , Air Pollutants/analysis , Environmental Monitoring/methods , Manure , Odorants , Animals , Cattle
4.
J Environ Qual ; 37(4): 1567-74, 2008.
Article in English | MEDLINE | ID: mdl-18574189

ABSTRACT

Vegetated buffers strips typically have limited ability to reduce delivery of dissolved phosphorus (DP) from agricultural fields to surface waters. A field study was conducted to evaluate the ability of buffer strips enhanced with drinking water treatment residuals (WTRs) to control runoff P losses from surface-applied biosolids characterized by high water-extractable P (4 g kg(-)(1)). Simulated rainfall (62.4 mm h(-1)) was applied to grassed plots (3 m x 10.7 m including a 2.67 m downslope buffer) surface-amended with biosolids at 102 kg P ha(-1) until 30 min of runoff was collected. With buffer strips top-dressed with WTR (20 Mg ha(-1)), runoff total P (TP = 2.5 mg L(-1)) and total DP (TDP = 1.9 mg L(-1)) were not statistically lower (alpha = 0.05) compared to plots with unamended grass buffers (TP = 2.7 mg L(-1); TDP = 2.6 mg L(-1)). Although the applied WTR had excess capacity (Langmuir P maxima of 25 g P kg(-1)) to sorb all runoff P, kinetic experiments suggest that sheet flow travel time across the buffers ( approximately 30 s) was insufficient for significant P reduction. Effective interception of dissolved P in runoff water by WTR-enhanced buffer strips requires rapid P sorption kinetics and hydrologic flow behavior ensuring sufficient runoff residence time and WTR contact in the buffer. Substantial phosphate-adsorbent contact opportunity may be more easily achieved by incorporating WTRs into P-enriched soils or blending WTRs with applied P sources.


Subject(s)
Phosphorus/isolation & purification , Sewage , Water Supply/analysis , Kinetics , Rain
5.
J Environ Qual ; 35(6): 2195-201, 2006.
Article in English | MEDLINE | ID: mdl-17071889

ABSTRACT

Phosphorus release to runoff varies widely for different land-applied organic P sources even when spread at equivalent total P rates. To address this variability, some P site indices include tabulated P source coefficients (PSCs) for differential weighting of applied P materials based on their runoff enrichment potential. Because runoff P can vary widely even within source categories depending on composition, storage, and treatment differences, this study explored a method for estimating PSCs based on the water-extractable P (WEP) content of the applied amendment. Using seven published rainfall-runoff studies that followed National Phosphorus Research Project protocols, runoff dissolved P (RDP) was correlated (r(2) = 0.80) with WEP for multiple surface-applied manures and biosolids. Assuming amendments with WEP >/= 10 g kg(-1) behave as highly soluble P sources and have a maximum PSC of 1.0, an empirical equation was developed for computing source-specific PSCs from laboratory-determined WEP values [PSC = 0.102 x WEP(0.99)]. For two independent runoff experiments, correlations between RDP loss and P source loading rate were improved when loading rates were multiplied by the computed (r(2) = 0.73-0.86) versus generic (r(2) = 0.45-0.48) PSCs. Source-specific PSCs should enhance the ability of assessment tools to identify vulnerable sites and P loss management alternatives, although the exact inclusion process depends on index scaling and conceptual framework.


Subject(s)
Abstracting and Indexing , Environmental Monitoring , Manure/analysis , Phosphorus/analysis , Soil Pollutants/analysis , Water Pollutants/analysis , Agriculture , Animals , Cattle , Organic Chemicals/analysis , Poultry , Solubility , Water Movements
6.
J Environ Qual ; 34(5): 1632-9, 2005.
Article in English | MEDLINE | ID: mdl-16091616

ABSTRACT

Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.


Subject(s)
Manure/analysis , Soil Pollutants/analysis , Soil , Water Movements , Agriculture , Pennsylvania , Rain
7.
Water Environ Res ; 76(2): 121-9, 2004.
Article in English | MEDLINE | ID: mdl-15168843

ABSTRACT

Phosphorus-based nutrient management will inevitably be required for land application of biosolids. Water-extractable phosphorus (WEP) in livestock manures is an indicator of phosphorus loss from agricultural watersheds and this study evaluated its use for biosolids. The WEP to total phosphorus percentage (PWEP) in 41 biosolids (representing a variety of wastewater and solids treatment processes) was compared to dairy and poultry manures and triple superphosphate fertilizer. The mean PWEP for conventionally treated and stabilized biosolids was 2.4%, which was significantly lower than inorganic fertilizer (85%), dairy manure (52%), and poultry manure (21%). Low biosolids PWEP is attributed to elevated aluminum and iron content from chemical additions during wastewater treatment and solids dewatering operations. Facilities using biological phosphorus removal had the highest mean biosolids PWEP (approximately 14%), whereas heat-dried biosolids had the lowest average PWEP (< approximately 0.5%). Paired samples of digested cake and the corresponding biosolids treated by processes to further reduce pathogens (i.e., thermal treatment, composting, and advanced alkaline stabilization) showed that these processes tended to reduce biosolids PWEP. Biosolids composition and processing mode exert a controlling influence on the potential for off-site phosphorus migration at land-application sites. Nutrient management policies for land-based recycling should account for the widely varying potential of organic amendments to cause soluble phosphorus losses in runoff and leaching.


Subject(s)
Conservation of Natural Resources , Fertilizers , Phosphorus/isolation & purification , Waste Disposal, Fluid/methods , Animals , Animals, Domestic , Manure , Solubility , Water
8.
Appl Opt ; 8(2): 315-7, 1969 Feb 01.
Article in English | MEDLINE | ID: mdl-20072220

ABSTRACT

The design and performance of a beam condenser for ir spectrophotometers such as the Beckman model IR-11 is described. The instrument has an image size of 4 mm x 8 mm and permits the use of samples mounted in the tail of a cryostat whose outside dimension is as large as 7 cm square. Applications to negative light flux spectroscopy are described, in particular, the direct measurement of the longitudinal optical frequency of lattice vibration for AgBr and AgCl.

SELECTION OF CITATIONS
SEARCH DETAIL
...