Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Prev Alzheimers Dis ; 4(4): 226-235, 2017.
Article in English | MEDLINE | ID: mdl-29181487

ABSTRACT

BACKGROUND: Aging is a highly complex biological process driven by multiple factors. Its progression can partially be influenced by nutritional interventions. Vitamin E is a lipid-soluble anti-oxidant that is investigated as nutritional supplement for its ability to prevent or delay the onset of specific aging pathologies, including neurodegenerative disorders. PURPOSE: We aimed here to investigate the effect of vitamin E during aging progression in a well characterized mouse model for premature aging. METHOD: Xpg-/- animals received diets with low (~2.5 mg/kg feed), medium (75 mg/kg feed) or high (375 mg/kg feed) vitamin E concentration and their phenotype was monitored during aging progression. Vitamin E content was analyzed in the feed, for stability reasons, and in mouse plasma, brain, and liver, for effectiveness of the treatment. Subsequent age-related changes were monitored for improvement by increased vitamin E or worsening by depletion in both liver and nervous system, organs sensitive to oxidative stress. RESULTS: Mice supplemented with high levels of vitamin E showed a delayed onset of age-related body weight decline and appearance of tremors when compared to mice with a low dietary vitamin E intake. DNA damage resulting in liver abnormalities such as changes in polyploidy, was considerably prevented by elevated amounts of vitamin E. Additionally, immunohistochemical analyses revealed that high intake of vitamin E, when compared with low and medium levels of vitamin E in the diet, reduces the number of p53-positive cells throughout the brain, indicative of a lower number of cells dying due to DNA damage accumulated over time. CONCLUSIONS: Our data underline a neuroprotective role of vitamin E in the premature aging animal model used in this study, likely via a reduction of oxidative stress, and implies the importance of improved nutrition to sustain health.


Subject(s)
Aging, Premature/diet therapy , Aging, Premature/pathology , Brain/pathology , Cell Death , Dietary Supplements , Vitamin E/administration & dosage , Aging, Premature/metabolism , Animals , Body Weight , Brain/metabolism , Cell Death/physiology , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Disease Models, Animal , Eating , Endonucleases/deficiency , Endonucleases/genetics , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Oxidative Stress/physiology , Random Allocation , Time Factors , Transcription Factors/deficiency , Transcription Factors/genetics , Tremor/diet therapy , Tremor/metabolism , Tremor/pathology , Vitamin E/metabolism
2.
Nature ; 537(7620): 427-431, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27556946

ABSTRACT

Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1∆/-) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg-/- (also known as Ercc5-/-) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.


Subject(s)
Aging/genetics , Caloric Restriction , DNA Repair/genetics , Diet, Reducing , Genomic Instability , Animals , Brain/physiology , DNA Damage , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Endonucleases/deficiency , Endonucleases/genetics , Female , Male , Mice , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/prevention & control , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Transcription Factors/deficiency , Transcription Factors/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...