Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36765634

ABSTRACT

Breast cancer (BC) is a nearly ubiquitous malignancy that effects the lives of millions worldwide. Recently, nutritional prevention of BC has received increased attention due to its efficacy and ease of application. Chief among chemopreventive compounds are plant-based substances known as dietary phytochemicals. Sulforaphane (SFN), an epigenetically active phytochemical found in cruciferous vegetables, has shown promise in BC prevention. In addition, observational studies suggest that the life stage of phytochemical consumption may influence its anticancer properties. These life stages, called critical periods (CPs), are associated with rapid development and increased susceptibility to cellular damage. Puberty, a CP in which female breast tissue undergoes proliferation and differentiation, is of particular interest for later-life BC development. However, little is known about the importance of nutritional chemoprevention to CPs. We sought to address this by utilizing two estrogen receptor-negative [ER(-)] transgenic mouse models fed SFN-containing broccoli sprout extract during the critical period of puberty. We found that this treatment resulted in a significant decrease in tumor incidence and weight, as well as an increase in tumor latency. Further, we found significant alterations in the long-term expression of cancer-associated genes, including p21, p53, and BRCA2. Additionally, our transcriptomic analyses identified expressional changes in many cancer-associated genes, and bisulfite sequencing revealed that the antiproliferation-associated gene Erich4 was both hypomethylated and overexpressed in our experimental group. Our study indicates that dietary interventions during the CP of puberty may be important for later-life ER(-) BC prevention and highlights potential important genetic and epigenetic targets for treatment and study of the more deadly variants of BC.

3.
Neuropsychopharmacology ; 46(4): 709-720, 2021 03.
Article in English | MEDLINE | ID: mdl-32927466

ABSTRACT

Exposure to drugs of abuse produces robust transcriptional and epigenetic reorganization within brain reward circuits that outlives the direct effects of the drug and may contribute to addiction. DNA methylation is a covalent epigenetic modification that is altered following stimulant exposure and is critical for behavioral and physiological adaptations to drugs of abuse. Although activity-related loss of DNA methylation requires the Gadd45 (Growth arrest and DNA-damage-inducible) gene family, very little is known about how this family regulates activity within the nucleus accumbens or behavioral responses to drugs of abuse. Here, we combined genome-wide transcriptional profiling, pharmacological manipulations, electrophysiological measurements, and CRISPR tools with traditional knockout and behavioral approaches in rodent model systems to dissect the role of Gadd45b in dopamine-dependent epigenetic regulation and cocaine reward. We show that acute cocaine administration induces rapid upregulation of Gadd45b mRNA in the rat nucleus accumbens, and that knockout or site-specific CRISPR/Cas9 gene knockdown of Gadd45b blocks cocaine conditioned place preference. In vitro, dopamine treatment in primary striatal neurons increases Gadd45b mRNA expression through a dopamine receptor type 1 (DRD1)-dependent mechanism. Moreover, shRNA-induced Gadd45b knockdown decreases expression of genes involved in psychostimulant addiction, blocks induction of immediate early genes by DRD1 stimulation, and prevents DRD1-mediated changes in DNA methylation. Finally, we demonstrate that Gadd45b knockdown decreases striatal neuron action potential burst duration in vitro, without altering other electrophysiological characteristics. These results suggest that striatal Gadd45b functions as a dopamine-induced gene that is necessary for cocaine reward memory and DRD1-mediated transcriptional activity.


Subject(s)
Cocaine , Animals , Antigens, Differentiation , Cocaine/pharmacology , Dopamine , Epigenesis, Genetic , Mice , Mice, Inbred C57BL , Nucleus Accumbens , Rats
4.
Cells ; 8(10)2019 10 08.
Article in English | MEDLINE | ID: mdl-31597272

ABSTRACT

Breast cancer is a sporadic disease with genetic and epigenetic components. Genomic instability in breast cancer leads to mutations, copy number variations, and genetic rearrangements, while epigenetic remodeling involves alteration by DNA methylation, histone modification and microRNAs (miRNAs) of gene expression profiles. The accrued scientific findings strongly suggest epigenetic dysregulation in breast cancer pathogenesis though genomic instability is central to breast cancer hallmarks. Being reversible and plastic, epigenetic processes appear more amenable toward therapeutic intervention than the more unidirectional genetic alterations. In this review, we discuss the epigenetic reprogramming associated with breast cancer such as shuffling of DNA methylation, histone acetylation, histone methylation, and miRNAs expression profiles. As part of this, we illustrate how epigenetic instability orchestrates the attainment of cancer hallmarks which stimulate the neoplastic transformation-tumorigenesis-malignancy cascades. As reversibility of epigenetic controls is a promising feature to optimize for devising novel therapeutic approaches, we also focus on the strategies for restoring the epistate that favor improved disease outcome and therapeutic intervention.


Subject(s)
Breast Neoplasms/genetics , Epigenesis, Genetic , MicroRNAs/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , DNA Methylation , Female , Gene Expression Regulation, Neoplastic , Histone Code , Humans , Receptors, Estrogen/metabolism
5.
Cells ; 8(2)2019 02 21.
Article in English | MEDLINE | ID: mdl-30795542

ABSTRACT

Telomeres and telomerase provide a unique and important avenue of study in improving both life expectancy and quality of life due to their close association with aging and disease. While major advances in our understanding of these two biological mediators have characterized the last two decades, previous studies have been limited by the inability to affect change in real time within living cells. The last three years, however, have witnessed a huge step forward to overcome this limitation. The advent of the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system has led to a wide array of targeted genetic studies that are already being employed to modify telomeres and telomerase, as well as the genes that affect them. In this review, we analyze studies utilizing the technology to target and modify telomeres, telomerase, and their closely associated genes. We also discuss how these studies can provide insight into the biology and mechanisms that underlie aging, cancer, and other diseases.


Subject(s)
Aging/genetics , CRISPR-Cas Systems/genetics , Disease/genetics , Telomerase/metabolism , Telomere/metabolism , Epigenesis, Genetic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...