Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Biochemistry ; 40(28): 8397-409, 2001 Jul 27.
Article in English | MEDLINE | ID: mdl-11444987

ABSTRACT

The molecular basis of insulin fibril formation was investigated by studying the structural properties and kinetics of fibril formation of 20 different human insulin mutants at both low pH (conditions favoring monomer/dimer) and at pH 7.4 (conditions favoring tetramer/hexamer). Small-angle X-ray scattering showed insulin to be monomeric in 20% acetic acid, 0.1 M NaCl, pH 2. The secondary structure of the mutants was assessed using far-UV circular dichroism, and the tertiary structure was determined using near-UV circular dichroism, quenching of intrinsic fluorescence by acrylamide and interactions with the hydrophobic probe 1-anilino-8-naphthalene-sulfonic acid (ANS). The kinetics of fibril formation were monitored with the fluorescent dye, Thioflavin T. The results indicate that the monomer is the state from which fibrils arise, thus under some conditions dissociation of hexamers may be rate limiting or partially rate limiting. The insulin mutants were found to retain substantial nativelike secondary and tertiary structure under all conditions studied. The results suggest that fibril formation of the insulin mutants is controlled by specific molecular interactions that are sensitive to variations in the primary structure. The observed effects of several mutations on the rate of fibril formation are inconsistent with a previously suggested model for fibrillation [Brange, J., Whittingham, J., Edwards, D., Youshang, Z., Wollmer, A., Brandenburg, D., Dodson, G., and Finch, J. (1997) Curr. Sci. 72, 470-476]. Two surfaces on the insulin monomer are identified as potential interacting sites in insulin fibrils, one consisting of the residues B10, B16, and B17 and the other consisting of at least the residues A8 and B25. The marked increase in the lag time for fibril formation with mutations to more polar residues, as well as mutations to charged residues, demonstrates the importance of both hydrophobic and electrostatic interactions in the initial stages of fibrillation. A model for insulin fibril formation is proposed in which the formation of a partially folded intermediate is the precursor for associated species on the pathway to fibril formation.


Subject(s)
Amino Acid Substitution/genetics , Insulin/genetics , Insulin/metabolism , Mutation , Amino Acid Sequence , Animals , Cattle , Circular Dichroism , Humans , Hydrogen-Ion Concentration , Insulin/chemistry , Microscopy, Electron , Molecular Sequence Data , Protein Structure, Secondary/genetics , Protein Structure, Tertiary/genetics , Spectrometry, Fluorescence , Temperature
2.
Glycobiology ; 11(6): 473-9, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11445552

ABSTRACT

Sulfatide is a glycolipid that has been associated with insulin-dependent diabetes mellitus. It is present in the islets of Langerhans and follows the same intracellular route as insulin. However, the role of sulfatide in the beta cell has been unclear. Here we present evidence suggesting that sulfatide promotes the folding of reduced proinsulin, indicating that sulfatide possesses molecular chaperone activity. Sulfatide associates with insulin by binding to the insulin domain A8--A10 and most likely by interacting with the hydrophobic side chains of the dimer-forming part of the insulin B-chain. Sulfatide has a dual effect on insulin. It substantially reduces deterioration of insulin hexamer crystals at pH 5.5, conferring stability comparable to those in beta cell granules. Sulfatide also mediates the conversion of insulin hexamers to the biological active monomers at neutral pH, the pH at the beta-cell surface. Finally, we report that inhibition of sulfatide synthesis with chloroquine and fumonisine B1 leads to inhibition of insulin granule formation in vivo. Our observations suggest that sulfatide plays a key role in the folding of proinsulin, in the maintenance of insulin structure, and in the monomerization process.


Subject(s)
Insulin/chemistry , Proinsulin/metabolism , Protein Folding , Sulfoglycosphingolipids/pharmacology , Animals , Crystallography , Humans , Insulin/biosynthesis , Models, Molecular , Proinsulin/drug effects , Protein Conformation , Swine
3.
Biochemistry ; 40(20): 6036-46, 2001 May 22.
Article in English | MEDLINE | ID: mdl-11352739

ABSTRACT

In the search for the molecular mechanism of insulin fibrillation, the kinetics of insulin fibril formation were studied under different conditions using the fluorescent dye thioflavin T (ThT). The effect of insulin concentration, agitation, pH, ionic strength, anions, seeding, and addition of 1-anilinonaphthalene-8-sulfonic acid (ANS), urea, TMAO, sucrose, and ThT on the kinetics of fibrillation was investigated. The kinetics of the fibrillation process could be described by the lag time for formation of stable nuclei (nucleation) and the apparent rate constant for the growth of fibrils (elongation). The addition of seeds eliminated the lag phase. An increase in insulin concentration resulted in shorter lag times and faster growth of fibrils. Shorter lag times and faster growth of fibrils were seen at acidic pH versus neutral pH, whereas an increase in ionic strength resulted in shorter lag times and slower growth of fibrils. There was no clear correlation between the rate of fibril elongation and ionic strength. Agitation during fibril formation attenuated the effects of insulin concentration and ionic strength on both lag times and fibril growth. The addition of ANS increased the lag time and decreased the apparent growth rate for insulin fibril formation. The ANS-induced inhibition appears to reflect the formation of amorphous aggregates. The denaturant, urea, decreased the lag time, whereas the stabilizers, trimethylamine N-oxide dihydrate (TMAO) and sucrose, increased the lag times. The results indicated that both nucleation and fibril growth were controlled by hydrophobic and electrostatic interactions. A kinetic model, involving the association of monomeric partially folded intermediates, whose concentration is stimulated by the air-water interface, leading to formation of the critical nucleus and thence fibrils, is proposed.


Subject(s)
Chemistry, Physical , Insulin/chemistry , Insulin/metabolism , Anilino Naphthalenesulfonates/chemistry , Animals , Anions/chemistry , Benzothiazoles , Cattle , Chemistry, Physical/methods , Excipients/chemistry , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Kinetics , Methylamines/chemistry , Models, Chemical , Osmolar Concentration , Protein Denaturation , Salts/chemistry , Sonication , Sucrose/chemistry , Surface Properties , Thiazoles/chemistry , Urea/chemistry
4.
J Pharm Sci ; 90(1): 29-37, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11064376

ABSTRACT

Fibril formation (aggregation) of insulin was investigated in acid media by visual inspection, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Insulin fibrillated faster in hydrochloric acid than in acetic acid at elevated temperatures, whereas the fibrillation tendencies were reversed at ambient temperatures. Electron micrographs showed that bovine insulin fibrils consisted of long fibers with a diameter of 5 to 10 nm and lengths of several microns. The fibrils appeared either as helical filaments (in hydrochloric acid) or arranged laterally in bundles (in acetic acid, NaCl). Freeze-thawing cycles broke the fibrils into shorter segments. FTIR spectroscopy showed that the native secondary structure of insulin was identical in hydrochloric acid and acetic acid, whereas the secondary structure of fibrils formed in hydrochloric acid was different from that formed in acetic acid. Fibrils of bovine insulin prepared by heating or agitating an acid solution of insulin showed an increased content of beta-sheet (mostly intermolecular) and a decrease in the intensity of the alpha-helix band. In hydrochloric acid, the frequencies of the beta-sheet bands depended on whether the fibrillation was induced by heating or agitation. This difference was not seen in acetic acid. Freeze-thawing cycles of the fibrils in hydrochloric acid caused an increase in the intensity of the band at 1635 cm(-1) concomitant with reduction of the band at 1622 cm(-1). The results showed that the structure of insulin fibrils is highly dependent on the composition of the acid media and on the treatment.


Subject(s)
Insulin/chemistry , Animals , Cattle , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron/methods , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared/methods
5.
Adv Drug Deliv Rev ; 35(2-3): 307-335, 1999 Feb 01.
Article in English | MEDLINE | ID: mdl-10837704

ABSTRACT

The aim of insulin replacement therapy is to normalize blood glucose in order to reduce the complications of diabetes. The pharmacokinetics of the traditional insulin preparations, however, do not match the profiles of physiological insulin secretion. The introduction of the rDNA technology 20 years ago opened new ways to create insulin analogs with altered properties. Fast-acting analogs are based on the idea that an insulin with less tendency to self-association than human insulin would be more readily absorbed into the systemic circulation. Protracted-acting analogs have been created to mimic the slow, steady rate of insulin secretion in the fasting state. The present paper provides a historical review of the efforts to change the physicochemical and pharmacological properties of insulin in order to improve insulin therapy. The available clinical studies of the new insulins are surveyed and show, together with modeling results, that new strategies for optimal basal-bolus treatment are required for utilization of the new fast-acting analogs.

6.
J Control Release ; 51(1): 47-56, 1998 Jan 23.
Article in English | MEDLINE | ID: mdl-9685903

ABSTRACT

The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.


Subject(s)
Insulin/analogs & derivatives , Insulin/administration & dosage , Iontophoresis , Skin Absorption/physiology , 2-Propanol/pharmacology , Animals , Anti-Infective Agents, Local/pharmacology , Biological Transport/drug effects , Ethanol/pharmacology , Female , Galvanic Skin Response/drug effects , Humans , Insulin/chemistry , Mice , Mice, Hairless , Skin Absorption/drug effects , Solvents/pharmacology
7.
Diabetologia ; 40 Suppl 2: S48-53, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9248701

ABSTRACT

Many of the structural properties of insulin have evolved in response to the requirements of biosynthesis, processing, transport and storage in the pancreatic beta cells, properties that are not necessary for the biological action of the hormone. It is therefore not surprising that wild-type insulin has far from optimal characteristics for replacement therapy. For example, native human insulin self-associates to hexameric units, which limits the possibilities for the absorption of the molecule by various routes. During the last decade new techniques of molecular design have emerged and recombinant DNA technology offers new and exciting opportunities for rational protein drug design. This review describes examples of recent advances in insulin engineering aimed at optimizing the hormone for therapy. Such approaches focus on improvements in the pharmacokinetic properties, storage stability, and feasibility for less intrusive routes of administration.


Subject(s)
Drug Design , Genetic Engineering/methods , Insulin/analogs & derivatives , Protein Engineering/methods , Animals , Biotechnology , Drug Stability , Humans , Insulin/administration & dosage , Insulin/metabolism , Iontophoresis , Models, Chemical
8.
J Pharm Sci ; 86(5): 517-25, 1997 May.
Article in English | MEDLINE | ID: mdl-9145374

ABSTRACT

Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.


Subject(s)
Insulin/chemistry , Animals , Insulin/metabolism , Protein Conformation , Rabbits , Structure-Activity Relationship
9.
Proteins ; 27(4): 507-16, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9141131

ABSTRACT

The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.


Subject(s)
Insulin/analogs & derivatives , Insulin/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Computer Simulation , Crystallography, X-Ray , Models, Molecular , Water/analysis
11.
J Diabetes Complications ; 7(2): 106-12, 1993.
Article in English | MEDLINE | ID: mdl-8518452

ABSTRACT

The human insulin in replacement therapy has a hexameric structure. Hexamerization of the insulin molecule facilitates biosynthesis and beta-cell storage of insulin, but is unnecessary for biologic activity and appears to contribute to delayed absorption of exogenous insulin from the subcutis. Insulin analogues with reduced self-association that are produced through recombinant DNA techniques have been shown to have in vivo activity comparable to that of human insulin and absorption kinetics characterized by higher and more constant rates of disappearance from the subcutaneous injection site. In preliminary studies in patients receiving insulin therapy, monomeric insulin analogues have been found to provide glycemic control in the postprandial period that is at least equivalent to that of human insulin. Findings in these studies suggest that the use of such analogues may provide meal-related insulin effects closer to those observed in the physiologic state by limiting excessive postprandial glucose excursions and decreasing the risk of late hypoglycemia. Banting and Best revolutionized diabetes therapy 70 years ago with the extraction of insulin from animal pancreas glands (J Lab Clin Med 7:464-472, 1922). Since that time, many refinements of the therapeutic properties of pharmaceutical preparations of the hormone have been introduced. Until recently, however, such advances have been limited to improvements in insulin purity, insulin species, and adjustment of the composition of the vehicle with respect to auxiliary substances and other additives. With the advent of recombinant DNA techniques, it has become possible to optimize the insulin molecule itself for purposes of replacement therapy.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Insulin/analogs & derivatives , Insulin/chemistry , Insulin/therapeutic use , Amino Acid Sequence , Blood Glucose/metabolism , Eating , Humans , Insulin/metabolism , Macromolecular Substances , Molecular Sequence Data , Receptor, Insulin/metabolism , Structure-Activity Relationship
12.
Pharm Biotechnol ; 5: 315-50, 1993.
Article in English | MEDLINE | ID: mdl-8019699

ABSTRACT

Insulin is composed of 51 amino acids in two peptide chains (A and B) linked by two disulfide bonds. The three-dimensional structure of the insulin molecule (insulin monomer), essentially the same in solution and in solid phase, exists in two main conformations. These differ in the extent of helix in the B chain which is governed by the presence of phenol or its derivatives. In acid and neutral solutions, in concentrations relevant for pharmaceutical formulation, the insulin monomer assembles to dimers and at neutral pH, in the presence of zinc ions, further to hexamers. Many crystalline modifications of insulin have been identified but only those with the hexamer as the basic unit are utilized in preparations for therapy. The insulin hexamer forms a relatively stable unit but some flexibility remains within the individual molecules. The intrinsic flexibility at the ends of the B chain plays an important role in governing the physical and chemical stability of insulin. A variety of chemical changes of the primary structure (yielding insulin derivatives), and physical modifications of the secondary to quaternary structures (resulting in "denaturation," aggregation, and precipitation) are known to affect insulin and insulin preparations during storage and use (Fig. 8). The tendency of insulin to undergo structural transformation resulting in aggregation and formation of insoluble insulin fibrils has been one of the most intriguing and widely studied phenomena in relation to insulin stability. Although the exact mechanism of fibril formation is still obscure, it is now clear that the initial step is an exposure of certain hydrophobic residues, normally buried in the three-dimensional structure, to the surface of the insulin monomer. This requires displacement of the COOH-terminal B-chain residues from their normal position which can only be accomplished via monomerization of the insulin. Therefore, most methods stabilizing insulin against fibrillation share the property of being able to counteract associated insulin from being disassembled. Chemical deterioration of insulin during storage of pharmaceutical preparations is mainly due to two categories of chemical reactions, hydrolysis and intermolecular transformation reactions leading to insulin HMWT products. The predominant hydrolysis reaction is deamidation of Asn residues which in acid solution takes place at residue A21, in neutral medium at residue B3. An amazing hydrolytic cleavage of the backbone A chain, presumably autocatalyzed by an adjacent insulin molecule, has been identified in insulin preparations containing rhombohedral crystals in combination with free zinc ions.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Insulin/chemistry , Amino Acid Sequence , Animals , Drug Stability , Humans , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry
13.
J Mol Biol ; 228(4): 1163-76, 1992 Dec 20.
Article in English | MEDLINE | ID: mdl-1361949

ABSTRACT

The assembly of the insulin hexamer brings the six B13 glutamate side-chains at the centre into close proximity. Their mutual repulsion is unfavourable and zinc co-ordination to B10 histidine is necessary to stabilize the well known zinc-containing hexamers. Since B13 is always a carboxylic acid in all known sequences of hexamer forming insulins, it is likely to be important in the hormone's biology. The mutation of B13 Glu-->Gln leads to a stable zinc-free hexamer with somewhat reduced potency. The structures of the zinc-free B13 Gln hexamer and the 2Zn B13 insulin hexamer have been determined by X-ray analysis and refined with 2.5 A and 2.0 A diffraction data, respectively. Comparisons show that in 2Zn B13 Gln insulin, the hexamer structure (T6) is very like that of the native hormone. On the other hand, the zinc-free hexamer assumes a quaternary structure (T3/R3) seen in the native 4Zn insulin hexamer, and normally associated only with high chloride ion concentrations in the medium. The crystal structures show the B13 Gln side-chains only contact water in contrast to the B13 glutamate in 2Zn insulin. The solvation of the B13 Gln may be associated with this residue favouring helix at B1 to B8. The low potency of the B13 Gln insulin also suggests the residue influences the hormone's conformation.


Subject(s)
Insulin/chemistry , Protein Conformation , Animals , Crystallization , Glutamates , Glutamic Acid , Glutamine , Humans , Insulin/metabolism , Macromolecular Substances , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Swine , X-Ray Diffraction , Zinc/chemistry
14.
Pharm Res ; 9(6): 715-26, 1992 Jun.
Article in English | MEDLINE | ID: mdl-1409351

ABSTRACT

Hydrolysis of insulin has been studied during storage of various preparations at different temperatures. Insulin deteriorates rapidly in acid solutions due to extensive deamidation at residue AsnA21. In neutral formulations deamidation takes place at residue AsnB3 at a substantially reduced rate under formation of a mixture of isoAsp and Asp derivatives. The rate of hydrolysis at B3 is independent of the strength of the preparation, and in most cases the species of insulin, but varies with storage temperature and formulation. Total transformation at B3 is considerably reduced when insulin is in the crystalline as compared to the amorphous or soluble state, indicating that formation of the rate-limiting cyclic imide decreases when the flexibility of the tertiary structure is reduced. Neutral solutions containing phenol showed reduced deamidation probably because of a stabilizing effect of phenol on the tertiary structure (alpha-helix formation) around the deamidating residue, resulting in a reduced probability for formation of the intermediate imide. The ratio of isoAsp/Asp derivative was independent of time and temperature, suggesting a pathway involving only intermediate imide formation, without any direct side-chain hydrolysis. However, increasing formation of Asp relative to isoAsp derivative was observed with decreasing flexibility of the insulin three-dimensional structure in the formulation. In certain crystalline suspensions a cleavage of the peptide bond A8-A9 was observed. Formation of this split product is species dependent: bovine greater than porcine greater than human insulin. The hydrolytic cleavage of the peptide backbone takes place only in preparations containing rhombohedral crystals in addition to free zinc ions.


Subject(s)
Insulin/chemistry , Drug Stability , Drug Storage , Hydrolysis , Models, Molecular , Temperature , Time Factors
15.
Pharm Res ; 9(6): 727-34, 1992 Jun.
Article in English | MEDLINE | ID: mdl-1409352

ABSTRACT

Formation of covalent, higher molecular weight transformation (HMWT) products during storage of insulin preparations at 4-45 degrees C was studied by size exclusion chromatography. The main products are covalent insulin dimers (CID), but in protamine-containing preparations the concurrent formation of covalent insulin-protamine (CIP) products takes place. At temperatures greater than or equal to 25 degrees C parallel or consecutive formation of covalent oligo- and polymers can also be observed. Rate of HMWT is only slightly influenced by species of insulin but varies with composition and formulation, and for isophane (NPH) preparations, also with the strength of preparation. Temperature has a pronounced effect on CID, CIP, and, especially, covalent oligo- and polymer formation. The CIDs are apparently formed between molecules within the hexameric unit common for all types of preparations and rate of formation is generally faster in glycerol-containing preparations. Compared with insulin hydrolysis reactions (see the preceding paper), HMWT is one order of magnitude slower, except for NPH preparations.


Subject(s)
Insulin/chemistry , Chemistry, Pharmaceutical , Chromatography, Gel , Drug Stability , Drug Storage , Molecular Weight
16.
Horm Metab Res Suppl ; 26: 125-30, 1992.
Article in English | MEDLINE | ID: mdl-1490679

ABSTRACT

The insulin preparations available today are not ideal for therapy as s.c. injection does not provide a physiological insulin profile. With the aim to improve the absorption properties recombinant DNA technology has been utilized to design novel insulin molecules with changed physico-chemical characteristics and hence altered subcutaneous absorption kinetics. Soluble, long-acting human insulin analogues in which the isoelectric point has been increased from 5.4 to approx. 7 are absorbed very slowly, providing a more constant basal insulin delivery with lower day-to-day variation than present protracted preparations. In addition they have better storage stability. Rapid-acting human insulin analogues with largely reduced self-association are absorbed substantially faster from subcutaneous tissue than current regular insulin and thus are better suited for bolus injection. The absorption kinetics of these analogues have been able to explain the mechanism behind the dose effect on insulin absorption rate.


Subject(s)
Insulin/analogs & derivatives , Absorption , Delayed-Action Preparations , Humans , Insulin/pharmacokinetics
17.
Acta Pharm Nord ; 4(3): 149-58, 1992.
Article in English | MEDLINE | ID: mdl-1418641

ABSTRACT

The influence of auxiliary substances and pH on the chemical transformations of insulin in pharmaceutical formulation, including various hydrolytic and intermolecular cross-linking reactions, was studied. Bacteriostatic agents had a profound stabilizing effect--phenol > m-cresol > methylparaben--on deamidation as well as on insulin intermolecular cross-linking reactions. Of the isotonicity substances, NaCl generally had a stabilizing effect whereas glycerol and glucose led to increased chemical deterioration. Phenol and sodium chloride exerted their stabilizing effect through independent mechanisms. Zinc ions, in concentrations that promote association of insulin into hexamers, increase the stability, whereas higher zinc content had no further influence. Protamine gave rise to additional formation of covalent protamine-insulin products which increased with increasing protamine concentration. The impact of excipients on the chemical processes seems to be dictated mainly via an influence on the three-dimensional insulin structure. The effect of the physical state of the insulin on the chemical stability was also complex, suggesting an intricate dependence of intermolecular proximity of involved functional groups. At pH values below five and above eight, insulin degrades relatively fast. At acid pH, deamidation at residue A21 and covalent insulin dimerization dominates, whereas disulfide reactions leading to covalent polymerization and formation of A- and B-chains prevailed in alkaline medium. Structure-reactivity relationship is proposed to be a main determinant for the chemical transformation of insulin.


Subject(s)
Excipients/chemistry , Insulin/chemistry , Animals , Cattle , Chemistry, Pharmaceutical , Drug Stability , Humans , Hydrogen-Ion Concentration , Swine
18.
Acta Pharm Nord ; 4(4): 209-22, 1992.
Article in English | MEDLINE | ID: mdl-1294186

ABSTRACT

Insulin decomposes by a multitude of chemical reactions [1-3]. It deamidates at two different residues by entirely different mechanisms. In acid, deamidation at AsnA21 is intramolecularly catalyzed by the protonated C-terminal, whereas above pH 6 an intermediate imide formation at residue AsnB3 leads to isoAsp and Asp derivatives. The imide formation requires a large rotation around the alpha-carbon/peptide carbonyl carbon bond at B3, corresponding to a 10 A movement of the B-chain N-terminal. The main determinant for the rate of B3 deamidation, as well as for the ratio between the two products formed, is the local conformational structure, which is highly influenced by various excipients and the physical state of the insulin. An amazing thermolysin-like, autoproteolytic cleavage of the A-chain takes place in rhombohedral insulin crystals, mediated by a concerted catalytic action by several, inter-hexameric functional groups and Zn2+. Intermolecular, covalent cross-linking of insulin molecules occurs via several mechanisms. The most prominent type of mechanism is aminolysis by the N-terminals, leading to isopeptide linkages with the A-chain side-chain amides of residues GlnA15, AsnA18 and AsnA21. The same type of reaction also leads to covalent cross-linking of the N-terminal in protamine with insulin. Disulfide exchange reactions, initiated by lysis of the A7-B7 disulfide bridge, lead mainly to formation of covalent oligo- and polymers. Activation energy (Ea) for the neutral deamidation and the aminolysis reactions was found to be 80 and 119 KJ/mol, respectively.


Subject(s)
Insulin/chemistry , Amino Acid Sequence , Animals , Cattle , Drug Stability , Humans , Insulin/pharmacokinetics , Molecular Sequence Data , Swine
19.
Acta Pharm Nord ; 4(4): 223-32, 1992.
Article in English | MEDLINE | ID: mdl-1294187

ABSTRACT

During storage of insulin formulated for therapy, minor amounts of various degradation and covalent di- and polymerization products are formed [1-3]. The main chemical transformation products were isolated from aged preparations and characterized chemically and biologically. The most prominent products formed in neutral medium were identified as a mixture of deamidation products hydrolyzed at residue B3, namely isoAsp B3 and Asp B3 derivatives. A hydrolysis product formed only in crystals of insulin zinc suspensions containing a surplus of zinc ions in the supernatant was identified as an A8-A9 cleavage product. The small amounts of covalent insulin dimers (CID) formed in all formulations were shown to be a heterogenous mixture of 5-6 different CIDs with a composition dependent on the pharmaceutical formulation. The chemical characteristics of the CIDs indicate that they are formed through a transamidation reaction mainly between the B-chain N-terminal and one of the four amide side-chains of the A chain. GlnA15, AsnA18 and, in particular, AsnA21 participate in the formation of such isopeptide links between two insulin molecules. The covalent insulin-protamine products (CIPP) formed during storage of NPH preparations presumably originate from a similar reaction between the protamine N-terminal with an amide in insulin. Covalent polymerization products, mainly formed during storage of amorphously suspended insulin at higher temperature, were shown to be due to disulfide interactions. Biological in vivo potencies relative to native insulin were less than 2% for the split-(A8-A9)-product and for the covalent disulfide exchange polymers, 4% for the CIPP, approximately 15% for the CIDs, whereas the B3 derivatives exhibited full potency. Rabbit immunization experiments revealed that none of the insulin transformation products had significantly increased immunogenicity in rabbits.


Subject(s)
Insulin/chemistry , Animals , Blood Glucose/metabolism , Cattle , Chromatography, High Pressure Liquid , Drug Stability , Insulin/isolation & purification , Insulin/pharmacology , Mice , Swine
20.
Diabetes Care ; 14(11): 1057-65, 1991 Nov.
Article in English | MEDLINE | ID: mdl-1797487

ABSTRACT

OBJECTIVE: The subcutaneous absorption and resulting changes in plasma insulin or analogue, glucose, C-peptide, and blood intermediary metabolite concentrations after subcutaneous bolus injection of three soluble human insulin analogues (AspB9GluB27, monomeric; AspB28, mixture of monomers and dimers; and AspB10, dimeric) and soluble human insulin were evaluated. RESEARCH DESIGN AND METHODS: Fasting healthy male volunteers (n = 7) were studied on five occasions 1 wk apart randomly receiving 0.6 nmol.kg-1 s.c. 125I-labeled AspB10 or soluble human insulin (Novolin R, Novo, Copenhagen); 1st study and 0.6 nmol.kg-1 s.c. 125I-labeled AspB28, AspB9GluB27 or soluble human insulin (2nd study). Residual radioactivity at the injection site was measured over 8 h with frequent venous sampling for plasma immunoreactive insulin or analogue, glucose, C-peptide, and blood intermediary metabolite concentrations. RESULTS: The three analogues were absorbed 2-3 times faster than human insulin. The mean +/- SE time to 50% residual radioactivity was 94 +/- 6 min for AspB10 compared with 184 +/- 10 min for human insulin (P less than 0.001), 83 +/- 8 min for AspB28 (P less than 0.005), and 63 +/- 9 min for AspB9GluB27 (P less than 0.001) compared with 182 +/- 21 min for human insulin. delta Peak plasma insulin analogue levels were significantly higher after each analogue than after human insulin (P less than 0.005). With all three analogues, the mean hypoglycemic nadir occurred earlier at 61-65 min postinjection compared with 201-210 min for the reference human insulins (P less than 0.005). The magnitude of the hypoglycemic nadir was greater after AspB9GluB27 (P less than 0.05) and AspB28 (P less than 0.001) compared with human insulin. There was a significantly faster onset and offset of responses in C-peptide and intermediary metabolite levels after the analogues than after human insulin (P less than 0.05). CONCLUSIONS: The rapid absorption and biological actions of these analogues offer potential therapeutic advantages over the current short-acting neutral soluble insulins.


Subject(s)
Blood Glucose/metabolism , Insulin/analogs & derivatives , Insulin/pharmacokinetics , 3-Hydroxybutyric Acid , Adult , Alanine/blood , C-Peptide/blood , Glycerol/blood , Humans , Hydroxybutyrates/blood , Injections, Subcutaneous , Insulin/administration & dosage , Insulin/pharmacology , Lactates/blood , Male , Metabolic Clearance Rate , Receptor, Insulin/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Reference Values , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL