Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 7(41): 17404-9, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26437684

ABSTRACT

The strength-ductility tradeoff has been a common long-standing dilemma in materials science. For example, superplasticity with a tradeoff in strength has been reported for Cu50Zr50 nanoglass (NG) with grain sizes below 5 nm. Here we report an improvement in strength without sacrificing superplasticity in Cu50Zr50 NG by using a bimodal grain size distribution. Our results reveal that large grains impart high strength, which is in striking contrast to the physical origin of the improvement in strength reported in the traditional nanostructured metals/alloys. Furthermore, the mechanical properties of NG with a bimodal nanostructure depend critically upon the fraction of large grains. By increasing the fraction of the large grains, a transition from superplastic flow to failure by shear banding is clearly observed. We expect that these results will be useful in the development of a novel strong and superplastic NG.

2.
Langmuir ; 30(6): 1573-9, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24467595

ABSTRACT

We perform molecular dynamics simulations to investigate the nanoscale frictional behavior of a perfluoropolyether (PFPE) film sandwiched between two diamond-like-carbon (DLC) coatings. We show that the PFPE films behave like a solid and can perform either a motion-station movement or a continuous motion with fluctuating velocities. The former movement is caused by the alternating stick and slip at the two individual interfaces, while the latter is due to the dynamic sliding motions simultaneously occurring at both interfaces. We reveal that these motion characteristics are governed by the competition between the two interfacial adhesion energies, which are strongly affected by the thermal vibrations and interface roughness fluctuations. We also find that the Amonton's law modified by incorporating the adhesion effect can be used to describe the mean friction traction vs normal pressure relation, but large fluctuations are present at low contact pressures. The magnitude of atomic level friction forces at the interface is found to be highly nonuniform. The directions of atomic level friction forces can even be opposite. With increasing the normal pressure, the nonuniformity of atomic level friction forces decreases first and then increases again. This change can be explained by the concurrent effects from the large difference in material stiffness and the changes in surface roughness under normal pressure. The present work reveals interesting insights into the sliding mechanisms in sandwiched structures and provides useful guidelines for the design of nanoscale lubricant systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...