Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(21): 10868-10883, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38756103

ABSTRACT

Colloid transport and retention in porous media are critical processes influencing various Earth science applications, from groundwater remediation to enhanced oil recovery. These phenomena become particularly complex in the confined spaces of nanoporous media, where strong boundary layer effects and nanoconfinement significantly alter colloid behavior. In this work, we use particle dynamics models to simulate colloid transport and retention processes in bicontinuous nanoporous (BNP) media under pressure gradients. By utilizing particle-based models, we track the movement of each colloid and elucidate the underlying colloid retention mechanisms. Under unfavorable attachment conditions, the results reveal two colloid retention mechanisms: physical straining and trapping in low-flow zone. Furthermore, we investigate the effects of critical factors including colloid volume fraction, d, pressure difference, ΔP, interaction between colloids and BNP media, Ec-p, and among colloids, Ec-c, on colloid transport. Analysis of breakthrough curves and colloid displacements demonstrates that higher values of d, lower values of ΔP, and strong Ec-p attractions significantly increase colloid retention, which further lead to colloid clogging and jamming. In contrast, Ec-c has minimal impact on colloid transport due to the limited colloid-colloid interaction in nanoporous channels. This work provides critical insights into the fundamental factors governing colloid transport and retention within stochastic nanoporous materials.

2.
J Phys Chem Lett ; 13(43): 10230-10236, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36300798

ABSTRACT

Nonadiabatic quantum molecular dynamics is used to investigate the evolution of GeTe photoexcited states. Results reveal a photoexcitation-induced picosecond nonthermal path for the loss of long-range order. A valence electron excitation threshold of 4% is found to trigger local disorder by switching Ge atoms from octahedral to tetrahedral sites and promoting Ge-Ge bonding. The resulting loss of long-range order for a higher valence electron excitation fraction is achieved without fulfilling the Lindemann criterion for melting, therefore utilizing a nonthermal path. The photoexcitation-induced structural disorder is accompanied by charge transfer from Te to Ge, Ge-Te bonding-to-antibonding, and Ge-Ge antibonding-to-bonding change, triggering Ge-Te bond breaking and promoting the formation of Ge-Ge wrong bonds. These results provide an electronic-structure basis to understand the photoexcitation-induced ultrafast changes in the structure and properties of GeTe and other phase-change materials.

3.
J Chem Phys ; 157(4): 044105, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35922358

ABSTRACT

Aramid fibers composed of poly(p-phenylene terephthalamide) (PPTA) polymers are attractive materials due to their high strength, low weight, and high shock resilience. Even though they have widely been utilized as a basic ingredient in Kevlar, Twaron, and other fabrics and applications, their intrinsic behavior under intense shock loading is still to be understood. In this work, we characterize the anisotropic shock response of PPTA crystals by performing reactive molecular dynamics simulations. Results from shock loading along the two perpendicular directions to the polymer backbones, [100] and [010], indicate distinct shock release mechanisms that preserve and destroy the hydrogen bond network. Shocks along the [100] direction for particle velocity Up < 2.46 km/s indicate the formation of a plastic regime composed of shear bands, where the PPTA structure is planarized. Shocks along the [010] direction for particle velocity Up < 2.18 km/s indicate a complex response regime, where elastic compression shifts to amorphization as the shock is intensified. While hydrogen bonds are mostly preserved for shocks along the [100] direction, hydrogen bonds are continuously destroyed with the amorphization of the crystal for shocks along the [010] direction. Decomposition of the polymer chains by cross-linking is triggered at the threshold particle velocity Up = 2.18 km/s for the [010] direction and Up = 2.46 km/s for the [100] direction. These atomistic insights based on large-scale simulations highlight the intricate and anisotropic mechanisms underpinning the shock response of PPTA polymers and are expected to support the enhancement of their applications.

4.
Langmuir ; 37(51): 14866-14877, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34902977

ABSTRACT

In this work, we employ many-body dissipative particle dynamics (mDPD) simulations to investigate the fluid flow process through bicontinuous nanoporous media, which are representative models for a broad class of nanoporous materials. The mDPD formulation includes attractive and repulsive interactions describing accurately fluid-fluid and fluid-solid interactions. As a mesoscale simulation method, mDPD can bridge the length and time scale gap between continuum and atomistic simulations. The bicontinuous nanoporous models are constructed considering a defined morphology, the porosity level, and varying pore sizes in the range from 3.41 to 13.63 nm. All models have a 0.65 porosity level and the same topology. The models provide a stochastic description of the morphology and pore size distribution and allow for a direct investigation of the dependence of permeability on the average pore size. The stationary nanoporous models are filled with fluid particles, and flow is induced by the action of confining pistons. Simulation results, obtained by imposing different pressure differences on the surfaces of the nanoporous media, indicate a linear pressure drop within the nanoporous model. Regardless of the complexities and different scales of the porous media considered, the steady-state fluid flow through the nanoporous models is proportional to the pressure gradient applied, in agreement with Darcy's law. The calculated pore size dependence of permeability is well described by the Hagen-Poiseuille law, considering a single shape correction factor that accounts for the flow resistance due to the complex nanoporous morphology. This work highlights the effect of the average pore size of a complex stochastic bicontinuous nanoporous medium on fluid properties. The results indicate rather a relatively simple dependence of permeability on the average pore size. The novel method we employ to generate the stochastic bicontinuous nanoporous structure allows the control of different geometric features that can be explored in future studies.

5.
Sci Rep ; 11(1): 19246, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34584145

ABSTRACT

Nanoglass (NG) as a new structure-tunable material has been investigated using both experiments and computational modeling. Experimentally, inert gas condensation (IGC) is commonly employed to prepare metallic glass (MG) nanoparticles that are consolidated using cold compression to generate an NG. In computational modeling, various methods have been used to generate NGs. However, due to the high computational cost involved, heretofore modeling investigations have not followed the experimental synthesis route. In this work, we use molecular dynamics simulations to generate an NG model by consolidating IGC-prepared Cu64Zr36 nanoparticles following a workflow similar to that of experiments. The resulting structure is compared with those of NGs produced following two alternative procedures previously used: direct generation employing Voronoi tessellation and consolidation of spherical nanoparticles carved from an MG sample. We focus on the characterization of the excess free volume and the Voronoi polyhedral statistics in order to identify and quantify contrasting features of the glass-glass interfaces in the three NG samples prepared using distinct methods. Results indicate that glass-glass interfaces in IGC-based NGs are thicker and display higher structural contrast with their parent MG structure. Nanoparticle-based methods display excess free volume exceeding 4%, in agreement with experiments. IGC-prepared nanoparticles, which display Cu segregation to their surfaces, generate the highest glass-glass interface excess free volume levels and the largest relative interface volume with excess free volume higher than 3%. Voronoi polyhedral analysis indicates a sharp drop in the full icosahedral motif fraction in the glass-glass interfaces in nanoparticle-based NG as compared to their parent MG.

6.
J Phys Chem Lett ; 11(23): 10242-10249, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33210918

ABSTRACT

Phase-change materials are of great interest for low-power high-throughput storage devices in next-generation neuromorphic computing technologies. Their operation is based on the contrasting properties of their amorphous and crystalline phases, which can be switched on the nanosecond time scale. Among the archetypal phase change materials based on Ge-Sb-Te alloys, Sb2Te3 displays a fast and energy-efficient crystallization-amorphization cycle due to its growth-dominated crystallization and low melting point. This growth-dominated crystallization contrasts with the nucleation-dominated crystallization of Ge2Sb2Te5. Here, we show that the energy required for and the time associated with the amorphization process can be further reduced by using a photoexcitation-based nonthermal path. We employ nonadiabatic quantum molecular dynamics simulations to investigate the time evolution of Sb2Te3 with 2.6, 5.2, 7.5, 10.3, and 12.5% photoexcited valence electron-hole carriers. Results reveal that the degree of amorphization increases with excitation, saturating at 10.3% excitation. The rapid amorphization originates from an instantaneous charge transfer from Te-p orbitals to Sb-p orbitals upon photoexcitation. Subsequent evolution of the excited state, within the picosecond time scale, indicates an Sb-Te bonding to antibonding transition. Concurrently, Sb-Sb and Te-Te antibonding decreases, leading to formation of wrong bonds. For photoexcitation of 7.5% valence electrons or larger, the electronic changes destabilize the crystal structure, leading to large atomic diffusion and irreversible loss of long-range order. These results highlight an ultrafast energy-efficient amorphization pathway that could be used to enhance the performance of phase change material-based optoelectronic devices.

7.
J Biomed Mater Res B Appl Biomater ; 108(1): 73-79, 2020 01.
Article in English | MEDLINE | ID: mdl-30895727

ABSTRACT

Here, a prototypical metallic nanoglass is proposed as a new alloy for balloon expandable stents. Traditionally, the stainless steel SS 316L alloy has been used as a preferred material for this application due to its proper combination of mechanical properties, corrosion resistance, and biocompatibility. Recently, metallic glasses (MGs) have been considered as promising materials for biodevice applications. MGs often display outstanding mechanical properties superior to those of conventional metallic alloys and overcome some of the weaknesses of SS 316L, such as radiopacity, stainless steel allergy, and thrombosis-induced restenosis. However, commonly used monolithic MGs, which have an amorphous homogeneous microstructure, suffer from lack of ductility that is necessary for deployment of balloon expandable stents. In contrast, nanoglasses, that is, amorphous alloys with heterogeneous microstructure, exhibit enhanced ductility which makes them promising materials for balloon expandable stents. We evaluate the feasibility of a prototypical Zr64 Cu36 nanoglass with a grain size of 5 nm for balloon expandable stents by performing finite element method modeling of the stent deployment process in a coronary artery. We consider the BX-Velocity stent design and the nanoglass mechanical properties calculated from atomistic simulations. The results suggest that nanoglasses are suitable materials for balloon expandable stent applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:73-79, 2020.


Subject(s)
Alloys/chemistry , Blood Vessel Prosthesis , Ceramics/chemistry , Materials Testing , Models, Cardiovascular , Stents , Stress, Mechanical , Humans
8.
J Phys Chem B ; 123(45): 9719-9723, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31644290

ABSTRACT

Ab initio molecular dynamics simulations of shock loading on poly(p-phenylene terephthalamide) (PPTA) reveal stress release mechanisms based on hydrogen bond preserving structural phase transformation (SPT) and planar amorphization. The SPT is triggered by [100] shock-induced coplanarity of phenylene groups and rearrangement of sheet stacking leading to a novel monoclinic phase. Planar amorphization is generated by [010] shock-induced scission of hydrogen bonds leading to disruption of polymer sheets, and trans-to-cis conformational change of polymer chains. In contrast to the latter, the former mechanism preserves the hydrogen bonding and cohesiveness of polymer chains in the identified novel crystalline phase preserving the strength of PPTA. The interplay between hydrogen bond preserving (SPT) and nonpreserving (planar amorphization) shock release mechanisms is critical to understanding the shock performance of aramid fibers.

9.
J Funct Biomater ; 9(1)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495521

ABSTRACT

Functional and mechanical properties of novel biomaterials must be carefully evaluated to guarantee long-term biocompatibility and structural integrity of implantable medical devices. Owing to the combination of metallic bonding and amorphous structure, metallic glasses (MGs) exhibit extraordinary properties superior to conventional crystalline metallic alloys, placing them at the frontier of biomaterials research. MGs have potential to improve corrosion resistance, biocompatibility, strength, and longevity of biomedical implants, and hence are promising materials for cardiovascular stent applications. Nevertheless, while functional properties and biocompatibility of MGs have been widely investigated and validated, a solid understanding of their mechanical performance during different stages in stent applications is still scarce. In this review, we provide a brief, yet comprehensive account on the general aspects of MGs regarding their formation, processing, structure, mechanical, and chemical properties. More specifically, we focus on the additive manufacturing (AM) of MGs, their outstanding high strength and resilience, and their fatigue properties. The interconnection between processing, structure and mechanical behaviour of MGs is highlighted. We further review the main categories of cardiovascular stents, the required mechanical properties of each category, and the conventional materials have been using to address these requirements. Then, we bridge between the mechanical requirements of stents, structural properties of MGs, and the corresponding stent design caveats. In particular, we discuss our recent findings on the feasibility of using MGs in self-expandable stents where our results show that a metallic glass based aortic stent can be crimped without mechanical failure. We further justify the safe deployment of this stent in human descending aorta. It is our intent with this review to inspire biodevice developers toward the realization of MG-based stents.

10.
Sci Rep ; 7(1): 16599, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192244

ABSTRACT

The conformations of polycarboxylate ether (PCE) type superplasticizer polymers adsorbed on the surface of MgO in cement pore solution are simulated by molecular dynamics (MD). Three types of PCEs commonly applied to concrete are simulated, namely a methacrylate type PCE (PCEM-P), an allyl ether type PCE (PCEA-P), and an isoprenyl ether type PCE (PCEI-P) with ethylene oxide (EO) unit numbers (P) of 25, 34 and 25, respectively. It is observed that the adsorbed layer thickness is inversely proportional to the experimentally measured adsorbed amount at the initial paste flow of 26 ± 0.5 cm. Simulation results indicate that the adsorbed layer thickness is sensitive to the initial polymer orientations against the model MgO surface. I.e., polymer molecules initially placed parallel/perpendicularly against the MgO surface gradually forms a train shaped or a loop and tail adsorption profile, respectively. As a result, the loop and tail shaped conformation gives a higher layer thickness.

11.
Sci Rep ; 5: 15611, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26503114

ABSTRACT

In order to improve the properties of metallic glasses (MG) a new type of MG structure, composed of nanoscale grains, referred to as nanoglass (NG), has been recently proposed. Here, we use large-scale molecular dynamics (MD) simulations of tensile loading to investigate the deformation and failure mechanisms of Cu64Zr36 NG nanopillars with large, experimentally accessible, 50 nm diameter. Our results reveal NG ductility and failure by necking below the average glassy grain size of 20 nm, in contrast to brittle failure by shear band propagation in MG nanopillars. Moreover, the results predict substantially larger ductility in NG nanopillars compared with previous predictions of MD simulations of bulk NG models with columnar grains. The results, in excellent agreement with experimental data, highlight the substantial enhancement of plasticity induced in experimentally relevant MG samples by the use of nanoglass architectures and point out to exciting novel applications of these materials.

12.
Phys Chem Chem Phys ; 16(46): 25515-22, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25347301

ABSTRACT

A class of macromolecules based on the architecture of the well-known fullerenes is theoretically investigated. The building blocks used to geometrically construct these molecules are the two dimensional structures: porous graphene and biphenylene-carbon. Density functional-based tight binding methods as well as reactive molecular dynamics methods are applied to study the electronic and structural properties of these molecules. Our calculations predict that these structures can be stable up to temperatures of 2500 K. The atomization energies of carbon structures are predicted to be in the range of 0.45 eV per atom to 12.11 eV per atom (values relative to the C60 fullerene), while the hexagonal boron nitride analogues have atomization energies between -0.17 eV per atom and 12.01 eV per atom (compared to the B12N12 fullerene). Due to their high porosity, these structures may be good candidates for gas storage and/or molecular encapsulation.

13.
J Phys Condens Matter ; 21(9): 095002, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-21817375

ABSTRACT

Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

14.
Phys Rev Lett ; 96(6): 065502, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16606007

ABSTRACT

Atomistic mechanisms of fracture accompanying structural phase transformation (SPT) in AlN ceramic under hypervelocity impact are investigated using a 209 x 10(6) atom molecular-dynamics simulation. The shock wave generated by the impact splits into an elastic wave and a slower SPT wave that transforms the wurtzite structure into the rocksalt phase. The interaction between the reflected elastic wave and the SPT wave front generates nanovoids and dislocations into the wurtzite phase. Nanovoids coalesce into mode I cracks while dislocations give rise to kink bands and mode II cracking.

SELECTION OF CITATIONS
SEARCH DETAIL
...