Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931896

ABSTRACT

In recent yearsjajajj, peptide-based therapeutics have attracted increasing interest as a potential approach to cancer treatment. Peptides are characterized by high specificity and low cytotoxicity, but they cannot be considered universal drugs for all types of cancer. Of the numerous anticancer-reported peptides, both natural and synthetic, only a few have reached clinical applications. However, in most cases, the mechanism behind the anticancer activity of the peptide is not fully understood. For this reason, in this work, we investigated the effect of the novel peptide ∆M4, which has documented anticancer activity, on two human skin cancer cell lines. A novel approach to studying the potential induction of apoptosis by anticancer peptides is the use of protein microarrays. The results of the apoptosis protein study demonstrated that both cell types, skin malignant melanoma (A375) and epidermoid carcinoma (A431), exhibited markers associated with apoptosis and cellular response to oxidative stress. Additionally, ∆M4 induced concentration- and time-dependent moderate ROS production, triggering a defensive response from the cells, which showed decreased activation of cytoplasmic superoxide dismutase. However, the studied cells exhibited a differential response in catalase activity, with A375 cells showing greater resistance to the peptide action, possibly mediated by the Nrf2 pathway. Nevertheless, both cell types showed moderate activity of caspases 3/7, suggesting that they may undergo partial apoptosis, although another pathway of programmed death cannot be excluded. Extended analysis of the mechanisms of action of anticancer peptides may help determine their effectiveness in overcoming chemoresistance in cancerous cells.

2.
Molecules ; 28(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36771178

ABSTRACT

Oxidative stress and the hypoxic microenvironment play a key role in the progression of human melanoma, one of the most aggressive skin cancers. The aim of our study was to evaluate the effect of Hypericum perforatum extracts of different origins (both commercially available (HpEx2) and laboratory-prepared from wild grown (HpEx12) and in vitro cultured (HpEx13) plants) and hyperforin salt on WM115 primary and WM266-4 lymph node metastatic human melanoma cells cultured under normoxic and hypoxic conditions. The polyphenol content, radical scavenging activity, and hyperforin concentration were determined in the extracts, while cell viability, apoptosis, ROS production, and expression of NRF2 and HO-1, important oxidative stress-related factors, were analyzed after 24 h of cell stimulation with HpExs and hyperforin salt. We found that cytotoxic, pro-apoptotic and antioxidant effects depend on the extract composition, the stage of melanoma progression, and the oxygen level. Hyperforin salt showed lower activity than H. perforatum extracts. Our study for the first time showed that the anticancer activity of H. perforatum extracts differs in normoxia and hypoxia. Importantly, the composition of extracts of various origins, including in vitro cultured, resulting in their unique properties, may be important in the selection of plants for therapeutic application.


Subject(s)
Antineoplastic Agents , Hypericum , Melanoma , Humans , Antioxidants/pharmacology , Hypericum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Terpenes , Neoplastic Processes , Melanoma/drug therapy , Phloroglucinol , Hypoxia , Bridged Bicyclo Compounds , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...