Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta ; 1842(4): 654-64, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24440524

ABSTRACT

The splicing of the microtubule-associated protein Tau is regulated during development and is found to be deregulated in a growing number of pathological conditions such as myotonic dystrophy type I (DM1), in which a reduced number of isoforms is expressed in the adult brain. DM1 is caused by a dynamic and unstable CTG repeat expansion in the DMPK gene, resulting in an RNA bearing long CUG repeats (n>50) that accumulates in nuclear foci and sequesters CUG-binding splicing factors of the muscle blind-like (MBNL) family, involved in the splicing of Tau pre-mRNA among others. However, the precise mechanism leading to Tau mis-splicing and the role of MBNL splicing factors in this process are poorly understood. We therefore used new Tau minigenes that we developed for this purpose to determine how MBNL1 and MBNL2 interact to regulate Tau exon 2 splicing. We demonstrate that an intronic region 250 nucleotides downstream of Tau exon 2 contains cis-regulatory splicing enhancers that are sensitive to MBNL and that bind directly to MBNL1. Both MBNL1 and MBNL2 act as enhancers of Tau exon 2 inclusion. Intriguingly, the interaction of MBNL1 and MBNL2 is required to fully reverse the mis-splicing of Tau exon 2 induced by the trans-dominant effect of long CUG repeats, similar to the DM1 condition. In conclusion, both MBNL1 and MBNL2 are involved in the regulation of Tau exon 2 splicing and the mis-splicing of Tau in DM1 is due to the combined inactivation of both.


Subject(s)
Exons , Myotonic Dystrophy/genetics , RNA-Binding Proteins/physiology , Response Elements , tau Proteins/genetics , Base Sequence , Cell Line, Tumor , Humans , Molecular Sequence Data , RNA Splicing
2.
Nucleic Acids Res ; 35(6): 1868-84, 2007.
Article in English | MEDLINE | ID: mdl-17332014

ABSTRACT

By binding to SECIS elements located in the 3'-UTR of selenoprotein mRNAs, the protein SBP2 plays a key role in the assembly of the selenocysteine incorporation machinery. SBP2 contains an L7Ae/L30 RNA-binding domain similar to that of protein 15.5K/Snu13p, which binds K-turn motifs with a 3-nt bulge loop closed by a tandem of G.A and A.G pairs. Here, by SELEX experiments, we demonstrate the capacity of SBP2 to bind such K-turn motifs with a protruding U residue. However, we show that conversion of the bulge loop into an internal loop reinforces SBP2 affinity and to a greater extent RNP stability. Opposite variations were found for Snu13p. Accordingly, footprinting assays revealed strong contacts of SBP2 with helices I and II and the 5'-strand of the internal loop, as opposed to the loose interaction of Snu13p. Our data also identifies new determinants for SBP2 binding which are located in helix II. Among the L7Ae/L30 family members, these determinants are unique to SBP2. Finally, in accordance with functional data on SECIS elements, the identity of residues at positions 2 and 3 in the loop influences SBP2 affinity. Altogether, the data provide a very precise definition of the SBP2 RNA specificity.


Subject(s)
3' Untranslated Regions/chemistry , RNA-Binding Proteins/metabolism , 3' Untranslated Regions/metabolism , Base Sequence , Binding Sites , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Protein Binding , RNA-Binding Proteins/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Selenocysteine/metabolism
3.
Mol Cell Biol ; 27(4): 1191-206, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17145781

ABSTRACT

The eukaryal Snu13p/15.5K protein binds K-turn motifs in U4 snRNA and snoRNAs. Two Snu13p/15.5K molecules bind the nucleolar U3 snoRNA required for the early steps of preribosomal processing. Binding of one molecule on the C'/D motif allows association of proteins Nop1p, Nop56p, and Nop58p, whereas binding of the second molecule on the B/C motif allows Rrp9p recruitment. To understand how the Snu13p-Rrp9p pair recognizes the B/C motif, we first improved the identification of RNA determinants required for Snu13p binding by experiments using the systematic evolution of ligands by exponential enrichment. This demonstrated the importance of a U.U pair stacked on the sheared pairs and revealed a direct link between Snu13p affinity and the stability of helices I and II. Sequence and structure requirements for efficient association of Rrp9p on the B/C motif were studied in yeast cells by expression of variant U3 snoRNAs and immunoselection assays. A G-C pair in stem II, a G residue at position 1 in the bulge, and a short stem I were found to be required. The data identify the in vivo function of most of the conserved residues of the U3 snoRNA B/C motif. They bring important information to understand how different K-turn motifs can recruit different sets of proteins after Snu13p association.


Subject(s)
RNA, Fungal/chemistry , RNA, Small Nucleolar/chemistry , Regulatory Sequences, Nucleic Acid , Ribonucleoproteins, Small Nuclear/metabolism , Ribonucleoproteins, Small Nucleolar/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Base Pairing , Base Sequence , Conserved Sequence , Guanine , Molecular Sequence Data , Protein Binding , RNA Stability , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Small Nucleolar/genetics , SELEX Aptamer Technique , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Sequence Deletion
4.
J Mol Biol ; 342(3): 757-73, 2004 Sep 17.
Article in English | MEDLINE | ID: mdl-15342235

ABSTRACT

The ribosomal L7Ae protein of archaea has the peculiarity to be a component of the C/D and H/ACA snRNPs, that guide rRNA post-transcriptional modifications. Its yeast (Snu13p) and human (15.5kDa protein) homologs are only found in C/D snoRNPs and the (U4/U6, U5) spliceosomal tri-snRNP. By using a large variety of RNAs, we compared the RNA-binding specificities of the recombinant Pyrococcus abyssi L7Ae and Saccharomyces cerevisiae Snu13 proteins. Unlike Snu13p, protein L7Ae binds terminal loops closed by two A:G and G:A pairs and canonical K-turn structures with similar efficiencies, provided that the terminal loop contains at least 5nt. In contrast to Snu13p, binding of protein L7Ae to canonical K-turn structures is not dependent on the identity of the residue at position 2 in the bulge. The peculiar KT-15 motif of P. abyssi 23S rRNA, that is recognized by L7Ae, does not associate with Snu13p. To get more information on the P. abyssi L7Ae protein, we solved its X-ray structure at 1.9A resolution. In spite of their sequence divergence, the free P. abyssi and bound H. marismortui proteins were found to have highly similar structures. Only a limited number of side-chain conformational changes occur at the protein-RNA interface upon RNA binding. In particular, one ion pair that is formed by residues Glu43 and Lys46 in the free protein is disrupted in the ribosomal 50S subunit, so that, residue Glu43 can interact with the RNA residue G264. The Glu43-Lys46 ion pair of protein L7Ae belongs to a complex network of ion pairs that may participate to protein thermostability.


Subject(s)
Archaeal Proteins/chemistry , Ribosomal Proteins/chemistry , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Base Sequence , Binding Sites , Haloarcula marismortui/genetics , Haloarcula marismortui/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Protein Conformation , Pyrococcus abyssi/genetics , Pyrococcus abyssi/metabolism , RNA, Archaeal/chemistry , RNA, Archaeal/genetics , RNA, Archaeal/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Static Electricity
5.
Curr Microbiol ; 43(6): 434-9, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11685512

ABSTRACT

The rubredoxin expression level in Clostridium butyricum DSM 5431 grown in continuous culture was monitored using primer extension analyses of the rub gene and a specific enzymatic assay of the iron-sulfur protein. In this way, we showed that variations in rubredoxin content and in rub mRNA level were influenced by the pH of the culture and were directly dependent on the carbon flux. The maximum rubredoxin level reached 1227.3 pmol (mg of proteins)(-1) (i.e. 0.7% of the total protein content) under strictly anaerobic conditions when cells grew at pH 6.5 with an excess of glucose. In addition, primer extension analyses established that the control for all the variations observed operates at the level of gene transcription. Altogether, these results suggested a main function of rubredoxin in Clostridium butyricum independent of the protection against oxygen as has already been reported for Desulfovibrio gigas and Pyrococcus furiosus.


Subject(s)
Carbon/metabolism , Clostridium/growth & development , Clostridium/metabolism , Rubredoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Culture Media , Hydrogen-Ion Concentration , Rubredoxins/genetics
6.
J Biol Chem ; 276(44): 40464-75, 2001 Nov 02.
Article in English | MEDLINE | ID: mdl-11526107

ABSTRACT

An equilibrium between spliced and unspliced primary transcripts is essential for retrovirus multiplication. This equilibrium is maintained by the presence of inefficient splice sites. The A3 3'-splice site of human immunodeficiency virus type I (HIV-1) is required for Tat mRNA production. The infrequent utilization of this splice site has been attributed to the presence of a suboptimal polypyrimidine tract and an exonic splicing silencer (ESS2) in tat exon 2 approximately 60 nucleotides downstream of 3'-splice site A3. Here, using site-directed mutagenesis followed by analysis of splicing in vitro and in HeLa cells, we show that the 5' extremity of tat exon 2 contains a second exonic splicing silencer (ESS2p), which acts to repress splice site A3. The inhibitory property of this exonic silencer was active when inserted downstream of another HIV-1 3'-splice site (A2). Protein hnRNP H binds to this inhibitory element, and two U-to-C substitutions within the ESS2p element cause a decreased hnRNP H affinity with a concomitant increase in splicing efficiency at 3'-splice site A3. This suggests that hnRNP H is directly involved in splicing inhibition. We propose that hnRNP H binds to the HIV-1 ESS2p element and competes with U2AF(35) for binding to the exon sequence flanking 3'-splice site A3. This binding results in the inhibition of splicing at 3'-splice site A3.


Subject(s)
Exons , Gene Products, tat/genetics , HIV-1/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , RNA Splicing , RNA, Messenger/genetics , Ribonucleoproteins/genetics , Base Sequence , Binding Sites , Cell Nucleus/metabolism , Gene Products, tat/metabolism , HeLa Cells , Heterogeneous-Nuclear Ribonucleoprotein Group F-H , Heterogeneous-Nuclear Ribonucleoproteins , Humans , Mutagenesis, Site-Directed , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Sequence Homology, Nucleic Acid , tat Gene Products, Human Immunodeficiency Virus
7.
J Biol Chem ; 276(37): 34934-40, 2001 Sep 14.
Article in English | MEDLINE | ID: mdl-11406626

ABSTRACT

To characterize the substrate specificity of the putative RNA:pseudouridine (Psi)-synthase encoded by the Saccharomyces cerevisiae open reading frame (ORF) YGR169c, the corresponding gene was deleted in yeast, and the consequences of the deletion on tRNA and small nuclear RNA modification were tested. The resulting DeltaYGR169c strain showed no detectable growth phenotype, and the only difference in Psi formation in stable cellular RNAs was the absence of Psi at position 31 in cytoplasmic and mitochondrial tRNAs. Complementation of the DeltaYGR169c strain by a plasmid bearing the wild-type YGR169c ORF restored Psi(31) formation in tRNA, whereas a point mutation of the enzyme active site (Asp(168)-->Ala) abolished tRNA:Psi(31)-synthase activity. Moreover, recombinant His(6)-tagged Ygr169 protein produced in Escherichia coli was capable of forming Psi(31) in vitro using tRNAs extracted from the DeltaYGR169c yeast cells as substrates. These results demonstrate that the protein encoded by the S. cerevisiae ORF YGR169c is the Psi-synthase responsible for modification of cytoplasmic and mitochondrial tRNAs at position 31. Because this is the sixth RNA:Psi-synthase characterized thus far in yeast, we propose to rename the corresponding gene PUS6 and the expressed protein Pus6p. Finally, the cellular localization of the green fluorescent protein-tagged Pus6p was studied by functional tests and direct fluorescence microscopy.


Subject(s)
Intramolecular Transferases/analysis , Saccharomyces cerevisiae/enzymology , Cytoplasm/metabolism , Hydro-Lyases , Intramolecular Transferases/chemistry , Intramolecular Transferases/genetics , Mitochondria/metabolism , Open Reading Frames , Pseudouridine/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae/growth & development , Substrate Specificity
8.
Nucleic Acids Res ; 29(2): 464-78, 2001 Jan 15.
Article in English | MEDLINE | ID: mdl-11139617

ABSTRACT

The HIV-1 transcript is alternatively spliced to over 30 different mRNAs. Whether RNA secondary structure can influence HIV-1 RNA alternative splicing has not previously been examined. Here we have determined the secondary structure of the HIV-1/BRU RNA segment, containing the alternative A3, A4a, A4b, A4c and A5 3' splice sites. Site A3, required for tat mRNA production, is contained in the terminal loop of a stem-loop structure (SLS2), which is highly conserved in HIV-1 and related SIVcpz strains. The exon splicing silencer (ESS2) acting on site A3 is located in a long irregular stem-loop structure (SLS3). Two SLS3 domains were protected by nuclear components under splicing condition assays. One contains the A4c branch points and a putative SR protein binding site. The other one is adjacent to ESS2. Unexpectedly, only the 3' A residue of ESS2 was protected. The suboptimal A3 polypyrimidine tract (PPT) is base paired. Using site-directed mutagenesis and transfection of a mini-HIV-1 cDNA into HeLa cells, we found that, in a wild-type PPT context, a mutation of the A3 downstream sequence that reinforced SLS2 stability decreased site A3 utilization. This was not the case with an optimized PPT. Hence, sequence and secondary structure of the PPT may cooperate in limiting site A3 utilization.


Subject(s)
3' Untranslated Regions , Conserved Sequence , HIV-1/chemistry , Nucleic Acid Conformation , RNA Splice Sites , RNA, Viral/chemistry , Regulatory Sequences, Nucleic Acid , 3' Untranslated Regions/genetics , 3' Untranslated Regions/metabolism , Alternative Splicing/genetics , Base Sequence , Conserved Sequence/genetics , Gene Products, tat/genetics , HeLa Cells , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , RNA Splice Sites/genetics , RNA, Viral/chemical synthesis , RNA, Viral/genetics , Regulatory Sequences, Nucleic Acid/genetics , Tumor Cells, Cultured , tat Gene Products, Human Immunodeficiency Virus
9.
Cell ; 103(3): 457-66, 2000 Oct 27.
Article in English | MEDLINE | ID: mdl-11081632

ABSTRACT

The box C/D snoRNAs function in directing 2'-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5 kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5 kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/ 15.5 kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP.


Subject(s)
Evolution, Molecular , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoproteins, Small Nucleolar/chemistry , Spliceosomes/chemistry , Yeasts/metabolism , Base Sequence , Binding Sites , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , HeLa Cells , Humans , Molecular Weight , Nucleic Acid Conformation , Precipitin Tests , Protein Binding , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA-Binding Proteins/genetics , Recombinant Proteins , Regulatory Sequences, Nucleic Acid/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/isolation & purification , Ribonucleoproteins, Small Nucleolar/metabolism , Spliceosomes/genetics , Substrate Specificity , Yeasts/genetics
10.
Nucleic Acids Res ; 28(15): 2959-68, 2000 Aug 01.
Article in English | MEDLINE | ID: mdl-10908360

ABSTRACT

A U3 snoRNA gene isolated from a Chlamydomonas reinhardtii (CRE:) genomic library contains putative pol III-specific transcription signals similar to those of RNA polymerase III-specific small nuclear (sn)RNA genes of higher plants. The 222 nt long CRE: U3 snoRNA was immunoprecipitated by anti-gamma-mpppN antisera, but not by anti-m(2,2,7)G antibodies, supporting the notion that it is a RNA polymerase III transcript. Tagged CRE: U3 snoRNA gene constructs were expressed in CRE: cells. Results of chemical and enzymatic structure probing of CRE: U3 snoRNA in solution and of DMS modification of CRE: U3 snoRNA under in vivo conditions revealed that the two-hairpin structure of the 5'-domain that is found in solution is no longer detected under in vivo conditions. The observed differences can be explained by the formation of several base pair interactions with the 18S and 5'-ETS parts of the pre-rRNA. A model that involves five intermolecular helices is proposed.


Subject(s)
Chlamydomonas reinhardtii/genetics , RNA, Protozoan/chemistry , RNA, Small Nucleolar/chemistry , Animals , Base Pairing , Base Sequence , Gene Expression , Immunosorbent Techniques , Models, Molecular , Molecular Sequence Data , Mutagenesis , Nucleic Acid Conformation , Polymerase Chain Reaction , RNA Polymerase III/metabolism , RNA, Protozoan/isolation & purification , RNA, Small Nucleolar/analysis , RNA, Small Nucleolar/genetics , Sequence Alignment , Solutions , Transcription, Genetic
11.
Nucleic Acids Res ; 28(9): 1941-6, 2000 May 01.
Article in English | MEDLINE | ID: mdl-10756195

ABSTRACT

So far, four RNA:pseudouridine (Psi)-synthases have been identified in yeast Saccharomyces cerevisiae. Together, they act on cytoplasmic and mitochondrial tRNAs, U2 snRNA and rRNAs from cytoplasmic ribosomes. However, RNA:Psi-synthases responsible for several U-->Psi conversions in tRNAs and UsnRNAs remained to be identified. Based on conserved amino-acid motifs in already characterised RNA:Psi-synthases, four additional open reading frames (ORFs) encoding putative RNA:Psi-synthases were identified in S.cerevisiae. Upon disruption of one of them, the YLR165c ORF, we found that the unique Psi residue normally present in the fully matured mitochondrial rRNAs (Psi(2819)in 21S rRNA) was missing, while Psi residues at all the tested pseudo-uridylation sites in cytoplasmic and mitochondrial tRNAs and in nuclear UsnRNAs were retained. The selective U-->Psi conversion at position 2819 in mitochondrial 21S rRNA was restored when the deleted yeast strain was transformed by a plasmid expressing the wild-type YLR165c ORF. Complementation was lost after point mutation (D71-->A) in the postulated active site of the YLR165c-encoded protein, indicating the direct role of the YLR165c protein in Psi(2819)synthesis in mitochondrial 21S rRNA. Hence, for nomenclature homogeneity the YLR165c ORF was renamed PUS5 and the corresponding RNA:Psi-synthase Pus5p. As already noticed for other mitochondrial RNA modification enzymes, no canonical mitochondrial targeting signal was identified in Pus5p. Our results also show that Psi(2819)in mitochondrial 21S rRNA is not essential for cell viability.


Subject(s)
Intramolecular Transferases/genetics , Pseudouridine/metabolism , RNA, Ribosomal/metabolism , RNA/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Base Sequence , Biological Transport , Cell Division , Fungal Proteins/metabolism , Intramolecular Transferases/metabolism , Mitochondria/metabolism , Molecular Sequence Data , Mutagenesis , Open Reading Frames , RNA/genetics , RNA Processing, Post-Transcriptional , RNA, Mitochondrial , RNA, Ribosomal/genetics , RNA, Small Nuclear/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Sequence Homology, Amino Acid , Uridine/metabolism
12.
FEBS Lett ; 462(1-2): 94-100, 1999 Nov 26.
Article in English | MEDLINE | ID: mdl-10580099

ABSTRACT

We describe the first identification of pseudouridine (Psi) residues in ribosomal RNA (23S rRNA) of an hyperthermophilic Archaea Sulfolobus acidocaldarius. In contrast to Eucarya rRNA, only six Psi residues were detected, which is rather close to the situation in Bacteria. However, three modified positions (Psi(2479), Psi(2535) and Psi(2550)) are unique for S. acidocaldarius. Two Psi residues at positions 2060 and 2594 are universally conserved, while one other Psi (position 2066) is also common to Eucarya. Taken together the results argue against the conservation of Psi-synthases between Archaea and Bacteria and provide a basis for the search of snoRNA-like guides for Psi formation in Archaea.


Subject(s)
Pseudouridine/analysis , RNA, Archaeal/chemistry , RNA, Ribosomal, 23S/chemistry , Sulfolobus acidocaldarius/chemistry , Base Sequence , Molecular Sequence Data , Nucleic Acid Conformation , Sulfolobus acidocaldarius/genetics
13.
RNA ; 5(11): 1495-503, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10580478

ABSTRACT

Two forms of spliceosomes were found in higher eukaryotes. The major form contains the U1, U2, U4, U5, and U6 snRNAs; the minor form contains the U11, U12, U4atac, U5, and U6atac snRNAs. Assembly and function of the major form are based on a complex dynamic of UsnRNA-UsnRNA and UsnRNA-pre-mRNA interactions, and the involved UsnRNA segments are highly posttranscriptionally modified in plants and vertebrates. To further characterize the minor form of spliceosomes, we looked for the psi residues in HeLa cells' U11, U12, U4atac, and U6atac snRNAs, using chemical approaches. Four psi residues were detected in total for these four atac UsnRNAs, compared to 20 in their counterparts of the major spliceosomes. The two psi residues detected in U12 are also found in U2 snRNA. One of them belongs to the branch-site-recognition sequence. It forms one of the base pairs that bulge out the A residue, responsible for the nucleophilic attack. Conservation of this strategic psi residue probably reflects a functional role. Another psi residue was detected in a U4atac snRNA segment involved in formation of helix II with U6atac. The fourth one was detected in the additional stem-loop structure present at the 3' end of U6atac snRNA. Differences in psi content of the atac and major UsnRNAs of human cells may participate in the differentiation of the two splicing systems. Based on secondary structure similarity, U2 and U12 snRNAs on the one hand and U4 and U4atac snRNAs on the other hand may share common psi synthases.


Subject(s)
Nucleic Acid Conformation , Pseudouridine/analysis , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/metabolism , Spliceosomes/metabolism , Animals , Base Sequence , Cell Nucleus/metabolism , HeLa Cells , Humans , Introns , Molecular Sequence Data , Vertebrates
14.
Biotechnol Bioeng ; 63(6): 712-20, 1999 Jun 20.
Article in English | MEDLINE | ID: mdl-10397828

ABSTRACT

At high glucose concentrations, Escherichia coli produces acetate (Crabtree effect). To look for the influence of glucose and/or acetate in the medium on the expression of a recombinant gene in E. coli, the effect of a pulse addition of glucose, on transcription of a cloned E. coli gapA gene and the resulting glyceraldehyde-3P-dehydrogenase activity (GAPDH), was tested during continuous cultivation of E. coli HB101 transformed with the plasmid pBR::EcogapA. Stable continuous cultures were established in a semi-synthetic medium supplemented with 5 g/L of glucose. After the addition of 7 g of glucose within a few seconds, gapA gene expression was strongly and very rapidly induced. As shown by primer-extension analysis, promoter P1, one of the four transcriptional promoters of the gapA gene, was strongly activated, and GAPDH activity increased. However, after rapid glucose consumption, acetate was produced and acetate concentrations above 2 g/L induced stress conditions. This is shown by a strong activation of promoter P2, that is recognized by the stress specific Esigma32 RNA polymerase. During this period, the total cellular RNA content was strongly diminished. Later, when acetate was partially consumed a high level of total RNA was restored, translation was efficient and a regular increase of the GAPDH-specific activity was observed. The transitions between glucose metabolism, acetate production and the end of acetate consumption, were marked by large increases in RNase and protease activities. For comparison, pulse-addition experiments were also performed with serine and alanine. A transient increase of GAPDH production associated with an increase in biomass was also found for serine that can be utilized as an energy source, whereas the addition of alanine, which is only incorporated into newly synthesized proteins, did not increase GAPDH production. The implication of these data for overproduction of recombinant proteins in E. coli is discussed.


Subject(s)
Escherichia coli/growth & development , Escherichia coli/genetics , Glucose/pharmacology , Acetic Acid/pharmacology , Biotechnology/methods , Carrier Proteins/genetics , Carrier Proteins/metabolism , Escherichia coli/drug effects , Fermentation , Glucose/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/pharmacology
15.
Mol Cell Biol ; 19(4): 2782-90, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10082544

ABSTRACT

The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.


Subject(s)
Conserved Sequence , RNA Splicing , RNA, Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear/metabolism , Animals , Base Sequence , Cell Nucleus , Cell-Free System , HeLa Cells , Humans , Mutation , Nucleic Acid Conformation , RNA Precursors/metabolism , RNA, Messenger/metabolism , RNA, Small Nuclear/chemistry , Xenopus
16.
Mol Cell Biol ; 19(3): 2142-54, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10022901

ABSTRACT

Pseudouridine (Psi) residues were localized in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (UsnRNAs) by using the chemical mapping method. In contrast to vertebrate UsnRNAs, S. cerevisiae UsnRNAs contain only a few Psi residues, which are located in segments involved in intermolecular RNA-RNA or RNA-protein interactions. At these positions, UsnRNAs are universally modified. When yeast mutants disrupted for one of the several pseudouridine synthase genes (PUS1, PUS2, PUS3, and PUS4) or depleted in rRNA-pseudouridine synthase Cbf5p were tested for UsnRNA Psi content, only the loss of the Pus1p activity was found to affect Psi formation in spliceosomal UsnRNAs. Indeed, Psi44 formation in U2 snRNA was abolished. By using purified Pus1p enzyme and in vitro-produced U2 snRNA, Pus1p is shown here to catalyze Psi44 formation in the S. cerevisiae U2 snRNA. Thus, Pus1p is the first UsnRNA pseudouridine synthase characterized so far which exhibits a dual substrate specificity, acting on both tRNAs and U2 snRNA. As depletion of rRNA-pseudouridine synthase Cbf5p had no effect on UsnRNA Psi content, formation of Psi residues in S. cerevisiae UsnRNAs is not dependent on the Cbf5p-snoRNA guided mechanism.


Subject(s)
Hydro-Lyases/metabolism , Pseudouridine , RNA, Fungal , RNA, Small Nuclear , RNA, Transfer , Ribonucleoprotein, U2 Small Nuclear/genetics , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Spliceosomes/genetics , Base Sequence , Catalysis , Chromosome Mapping , Fungal Proteins/genetics , Hydro-Lyases/genetics , Intramolecular Transferases/genetics , Molecular Sequence Data , Nucleic Acid Conformation , RNA Precursors , RNA Splicing , Substrate Specificity
17.
J Mol Biol ; 285(1): 133-47, 1999 Jan 08.
Article in English | MEDLINE | ID: mdl-9878394

ABSTRACT

The small nuclear ribonucleoprotein particles (snRNP) U1, U2, U4, and U5 contain a common set of eight Sm proteins that bind to the conserved single-stranded 5'-PuAU3-6GPu-3' (Sm binding site) region of their constituent U snRNA (small nuclear RNA), forming the Sm core RNP. Using native and in vitro reconstituted U1 snRNPs, accessibility of the RNA within the Sm core RNP to chemical structure probes was analyzed. Hydroxyl radical footprinting of in vitro reconstituted U1 snRNP demonstrated that riboses within a large continuous RNA region, including the Sm binding site, were protected. This protection was dependent on the binding of the Sm proteins. In contrast with the riboses, the phosphate groups within the Sm core site were accessible to modifying reagents. The invariant adenosine residue at the 5' end, as well as an adenosine two nucleotides downstream of the Sm binding site, showed an unexpected reactivity with dimethyl sulfate. This novel reactivity could be attributed to N7-methylation of the adenosine and was not observed in naked RNA, indicating that it is an intrinsic property of the RNA- protein interactions within the Sm core RNP. Further, this reactivity was observed concomitantly with formation of the Sm subcore intermediate during Sm core RNP assembly. As the Sm subcore can be viewed as the commitment complex in this assembly pathway, these results suggest that the peculiar reactivity of the Sm site adenosine bases may be diagnostic for proper assembly of the Sm core RNP. Consistent with this idea, a strong correlation was found between the unusual N7-A methylation sensitivity of the Sm core RNP and its ability to be imported into the nucleus of Xenopus laevis oocytes.


Subject(s)
Adenosine , Autoantigens/metabolism , Nucleic Acid Conformation , Ribonucleoprotein, U1 Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear , Animals , Binding Sites , Cell Nucleus , Methylation , Oocytes , Ribonucleoprotein, U1 Small Nuclear/metabolism , Uridine , Xenopus laevis , snRNP Core Proteins
18.
J Bacteriol ; 180(24): 6476-83, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9851989

ABSTRACT

The Escherichia coli gapB gene codes for a protein that is very similar to bacterial glyceraldehyde-3-phosphate dehydrogenases (GAPDH). In most bacteria, the gene for GAPDH is located upstream of the pgk gene encoding 3-phosphoglycerate kinase (PGK). This is the case for gapB. However, this gene is poorly expressed and encodes a protein with an erythrose 4-phosphate dehydrogenase activity (E4PDH). The active GAPDH is encoded by the gapA gene. Since we found that the nucleotide region upstream of the gapB open reading frame is responsible for part of the PGK production, we analyzed gapB promoter activity in vivo by direct measurement of the mRNA levels by reverse transcription. We showed the presence of a unique transcription promoter, gapB P0, with a cyclic AMP (cAMP) receptor protein (CRP)-cAMP binding site centered 70.5 bp upstream of the start site. Interestingly, the gapB P0 promoter activity was strongly enhanced when glucose was used as the carbon source. In these conditions, deletion of the CRP-cAMP binding site had little effect on promoter gapB P0 activity. In contrast, abolition of CRP production or of cAMP biosynthesis (crp or cya mutant strains) strongly reduced promoter gapB P0 activity. This suggests that in the presence of glucose, the CRP-cAMP complex has an indirect effect on promoter gapB P0 activity. We also showed that glucose stimulation of gapB P0 promoter activity depends on the expression of enzyme IIGlc (EIIGlc), encoded by the ptsG gene, and that the gapA P1 promoter is also activated by glucose via the EIIGlc protein. A similar glucose-mediated activation, dependent on the EIIGlc protein, was described by others for the pts operon. Altogether, this shows that when glucose is present in the growth medium expression of the E. coli genes required for its uptake (pts) and its metabolism (gapA and gapB-pgk) are coordinately activated by a mechanism dependent upon the EIIGlc protein.


Subject(s)
Aldehyde Oxidoreductases/genetics , Escherichia coli Proteins , Glucose/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Phosphoglycerate Kinase/genetics , Transcriptional Activation , Base Sequence , Binding Sites , Carbon , Cyclic AMP/metabolism , Cyclic AMP Receptor Protein/metabolism , DNA, Bacterial , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Molecular Sequence Data , Phosphoglycerate Kinase/biosynthesis , Promoter Regions, Genetic , RNA, Bacterial/metabolism
19.
RNA ; 4(3): 285-302, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9510331

ABSTRACT

The U3 snoRNA coding sequences from the genomic DNAs of Kluyveromyces delphensis and four variants of the Kluyveromyces marxianus species were cloned by PCR amplification. Nucleotide sequence analysis of the amplification products revealed a unique U3 snoRNA gene sequence in all the strains studied, except for K. marxianus var. fragilis. The K. marxianus U3 genes were intronless, whereas an intron similar to those of the Saccharomyces cerevisiae U3 genes was found in K. delphensis. Hence, U3 genes with and without intron are found in yeasts of the Saccharomycetoideae subfamily. The secondary structure of the K. delphensis pre-U3 snoRNA and of the K. marxianus mature snoRNAs were studied experimentally. They revealed a strong conservation in yeasts of (1) the architecture of U3 snoRNA introns, (2) the 5'-terminal domain of the mature snoRNA, and (3) the protein-anchoring regions of the U3 snoRNA 3' domain. In contrast, stem-loop structures 2, 3, and 4 of the 3' domain showed great variations in size, sequence, and structure. Using a genetic test, we show that, in spite of these variations, the Kluyveromyces U3 snoRNAs are functional in S. cerevisiae. We also show that S. cerevisiae U3A snoRNAs lacking the stem-loop structure 2 or 4 are functional. Hence, U3 snoRNA function can accommodate great variations of the RNA 3'-terminal domain.


Subject(s)
Genetic Variation , Introns , Kluyveromyces/genetics , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/genetics , Base Sequence , Evolution, Molecular , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Small Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Sequence Homology, Nucleic Acid , Yeasts/genetics
20.
Curr Microbiol ; 35(6): 319-26, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9353214

ABSTRACT

Carnobacterium piscicola CP5, isolated from a French mold-ripened soft cheese, produced a bacteriocin activity named carnocin CP5, which inhibited Carnobacterium, Enterococcus and Listeria spp. strains, and among the Lactobacillus spp. only Lactobacillus delbrueckii spp. [24]. The activity was purified by ammonium sulfate precipitation, anion exchange, and hydrophobic interaction chromatography followed by reverse-phase high-performance liquid chromatography (RP-HPLC). This latter step separated two peaks with anti-listerial activity (CP51 and CP52). Carnocin CP51 was partially sequenced, and the N-terminal part revealed the presence of the "pediocin-like consensus" sequence-Tyr-Gly-Asn-Gly-Val-. Then, a degenerated 24-mer oligonucleotide probe was constructed from the N-terminal sequence and used to detect the structural gene. It was localized on a plasmid of about 40 kb. Cloning of restriction fragments of this one, followed by DNA sequencing, revealed the presence of the second anti-Listeria bacteriocin gene (CP52). By comparing sequences in data banks and confirming results with PCR reactions, carnocin CP51 shared homologies with carnobacteriocin BM1, and carnocin CP52 was similar to carnobacteriocin B2, both produced by C. piscicola LV17 [2]. However, carnobacteriocin A from C. piscicola LV17 gene was lacking in C. piscicola CP5, and the two microorganisms have been isolated from different ecological environments: C. piscicola CP5 and C. piscicola LV17 were isolated from soft cheese and vacuum-packed meat respectively. This fact could allow different application perspectives for C. piscicola CP5.


Subject(s)
Bacteria/metabolism , Bacteriocins/genetics , Cheese/microbiology , Amino Acid Sequence , Bacteriocins/isolation & purification , Base Sequence , Molecular Sequence Data , Molecular Weight , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...