Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Haematologica ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450530

ABSTRACT

Comprehensive genomic sequencing is becoming a critical component in the assessment of hematologic malignancies, with broad implications for patient management. In this context, unequivocally discriminating somatic from germline events is challenging but greatly facilitated by matched analysis of tumor:normal pairs. In contrast to solid tumors, conventional sources of normal control (peripheral blood, buccal swabs, saliva) could be highly involved by the neoplastic process, rendering them unsuitable. In this work we describe our real-world experience using cell free DNA (cfDNA) isolated from nail clippings as an alternate source of normal control, through the dedicated review of 2,610 tumor:nail pairs comprehensively sequenced by MSK-IMPACT-heme. Overall, we find nail cfDNA is a robust source of germline control for paired genomic studies. In a subset of patients, nail DNA may have tumor DNA contamination, reflecting unique attributes of the hematologic disease and transplant history. Contamination is generally low level, but significantly more common among patients with myeloid neoplasms (20.5%; 304/1482) compared to lymphoid diseases (5.4%; 61/1128) and particularly enriched in myeloproliferative neoplasms with marked myelofibrosis. When identified in patients with lymphoid and plasma-cell neoplasms, mutations commonly reflected a myeloid profile and correlated with a concurrent/evolving clonal myeloid neoplasm. For nails collected after allogeneic stem-cell transplantation, donor DNA was identified in 22% (11/50). In this cohort, an association with recent history of graft-vs-host disease was identified. These findings should be considered as a potential limitation for the use of nail as normal control but could also provide important diagnostic information regarding the disease process.

2.
Cancer Discov ; 14(1): 49-65, 2024 01 12.
Article in English | MEDLINE | ID: mdl-37849038

ABSTRACT

There is a continuing debate about the proportion of cancer patients that benefit from precision oncology, attributable in part to conflicting views as to which molecular alterations are clinically actionable. To quantify the expansion of clinical actionability since 2017, we annotated 47,271 solid tumors sequenced with the MSK-IMPACT clinical assay using two temporally distinct versions of the OncoKB knowledge base deployed 5 years apart. Between 2017 and 2022, we observed an increase from 8.9% to 31.6% in the fraction of tumors harboring a standard care (level 1 or 2) predictive biomarker of therapy response and an almost halving of tumors carrying nonactionable drivers (44.2% to 22.8%). In tumors with limited or no clinical actionability, TP53 (43.2%), KRAS (19.2%), and CDKN2A (12.2%) were the most frequently altered genes. SIGNIFICANCE: Although clear progress has been made in expanding the availability of precision oncology-based treatment paradigms, our results suggest a continued unmet need for innovative therapeutic strategies, particularly for cancers with currently undruggable oncogenic drivers. See related commentary by Horak and Fröhling, p. 18. This article is featured in Selected Articles from This Issue, p. 5.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Mutation , Precision Medicine/methods , Medical Oncology/methods
3.
Blood Adv ; 8(4): 846-856, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38147626

ABSTRACT

ABSTRACT: Clonal hematopoiesis (CH) identified by somatic gene variants with variant allele fraction (VAF) ≥ 2% is associated with an increased risk of hematologic malignancy. However, CH defined by a broader set of genotypes and lower VAFs is ubiquitous in older individuals. To improve our understanding of the relationship between CH genotype and risk of hematologic malignancy, we analyzed data from 42 714 patients who underwent blood sequencing as a normal comparator for nonhematologic tumor testing using a large cancer-related gene panel. We cataloged hematologic malignancies in this cohort using natural language processing and manual curation of medical records. We found that some CH genotypes including JAK2, RUNX1, and XPO1 variants were associated with high hematologic malignancy risk. Chronic disease was predicted better than acute disease suggesting the influence of length bias. To better understand the implications of hematopoietic clonality independent of mutational function, we evaluated a set of silent synonymous and noncoding mutations. We found that silent CH, particularly when multiple variants were present or VAF was high, was associated with increased risk of hematologic malignancy. We tracked expansion of CH mutations in 26 hematologic malignancies sequenced with the same platform. JAK2 and TP53 VAF consistently expanded at disease onset, whereas DNMT3A and silent CH VAFs mostly decreased. These data inform the clinical and biological interpretation of CH in the context of nonhematologic cancer.


Subject(s)
Clonal Hematopoiesis , Hematologic Neoplasms , Humans , Aged , Hematopoiesis/genetics , Mutation , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Genotype
5.
Clin Cancer Res ; 29(22): 4586-4595, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37682528

ABSTRACT

PURPOSE: Erdafitinib is the only FDA-approved targeted therapy for FGFR2/3-altered metastatic urothelial cancer. We characterized the genetic landscape of FGFR-altered urothelial carcinoma and real-world clinical outcomes with erdafitinib, including on-treatment genomic evolution. EXPERIMENTAL DESIGN: Prospectively collected clinical data were integrated with institutional genomic data to define the landscape of FGFR2/3-altered urothelial carcinoma. To identify mechanisms of erdafitinib resistance, a subset of patients underwent prospective cell-free (cf) DNA assessment. RESULTS: FGFR3 alterations predictive of erdafitinib sensitivity were identified in 39% (199/504) of patients with non-muscle invasive, 14% (75/526) with muscle-invasive, 43% (81/187) with localized upper tract, and 26% (59/228) with metastatic specimens. One patient had a potentially sensitizing FGFR2 fusion. Among 27 FGFR3-altered cases with a primary tumor and metachronous metastasis, 7 paired specimens (26%) displayed discordant FGFR3 status. Erdafitinib achieved a response rate of 40% but median progression-free and overall survival of only 2.8 and 6.6 months, respectively (n = 32). Dose reductions (38%, 12/32) and interruptions (50%, 16/32) were common. Putative resistance mutations detected in cfDNA involved TP53 (n = 5), AKT1 (n = 1), and second-site FGFR3 mutations (n = 2). CONCLUSIONS: FGFR3 mutations are common in urothelial carcinoma, whereas FGFR2 alterations are rare. Discordance of FGFR3 mutational status between primary and metastatic tumors occurs frequently and raises concern over sequencing archival primary tumors to guide patient selection for erdafitinib therapy. Erdafitinib responses were typically brief and dosing was limited by toxicity. FGFR3, AKT1, and TP53 mutations detected in cfDNA represent putative mechanisms of acquired erdafitinib resistance.


Subject(s)
Carcinoma, Transitional Cell , Cell-Free Nucleic Acids , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Treatment Outcome , Genomics
6.
PLoS One ; 18(2): e0271505, 2023.
Article in English | MEDLINE | ID: mdl-36735656

ABSTRACT

Cell free DNA (cfDNA) and circulating tumor cell free DNA (ctDNA) from blood (plasma) are increasingly being used in oncology for diagnosis, monitoring response, identifying cancer causing mutations and detecting recurrences. Circulating tumor RB1 DNA (ctDNA) is found in the blood (plasma) of retinoblastoma patients at diagnosis before instituting treatment (naïve). We investigated ctDNA in naïve unilateral patients before enucleation and during enucleation (6 patients/ 8 mutations with specimens collected 5-40 minutes from severing the optic nerve) In our cohort, following transection the optic nerve, ctDNA RB1 VAF was measurably lower than pre-enucleation levels within five minutes, 50% less within 15 minutes and 90% less by 40 minutes.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Retinal Neoplasms , Retinoblastoma , Humans , Circulating Tumor DNA/genetics , Retinoblastoma/genetics , Retinoblastoma/surgery , Pilot Projects , Eye Enucleation , Mutation , Retinal Neoplasms/genetics , Retinal Neoplasms/surgery , Biomarkers, Tumor/genetics , Ubiquitin-Protein Ligases/genetics , Retinoblastoma Binding Proteins/genetics
7.
Invest Ophthalmol Vis Sci ; 63(13): 17, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36525262

ABSTRACT

Purpose: To investigate the presence of plasma circulating tumor DNA (ctDNA) in patients with uveal melanoma during and after primary tumor treatment. Methods: Detectability and variant allele frequency of ctDNA were assessed using a 129-oncogene panel using next-generation deep sequencing and hybridization capture in 69 patients with uveal melanoma undergoing primary treatment with enucleation (n = 8, during surgery) or plaque brachytherapy (n = 61; postoperative day 0, 1, 2, or 3). Follow-up assessments were performed in 39 patients over a median of 21 months (range, 3.2-31.9 months) of follow-up. Correlations between genomic data and disease parameters were performed. Results: Overall, ctDNA was detectable in 20 of 69 patients with uveal melanoma (28.9%) during the perioperative period. On the day of enucleation, ctDNA was detected in two of eight patients (25%). In patients undergoing brachytherapy, ctDNA was significantly more detectable on postoperative days 2 or 3 compared with postoperative day 0 or 1 (32.4% vs 0.0%; P = 0.0015). Patients with follow-up ctDNA that became detectable or had an increased variant allele frequency were significantly more likely to develop metastasis compared with patients with follow-up ctDNA that became undetectable or decreased variant allele frequency (P = 0.04). In patients with detectable vs. undetectable ctDNA, there was no significant difference in tumor size, stage or location. Conclusions: ctDNA is significantly more detectable at 48 to 72 hours after plaque brachytherapy compared with less than 48 hours. ctDNA can be detected during enucleation. Relative increases in ctDNA levels may herald the development of clinically apparent metastases.


Subject(s)
Circulating Tumor DNA , Melanoma , Uveal Neoplasms , Humans , Circulating Tumor DNA/genetics , Uveal Neoplasms/genetics , Uveal Neoplasms/radiotherapy , Melanoma/genetics , Melanoma/therapy , High-Throughput Nucleotide Sequencing , Biomarkers, Tumor/genetics
8.
Clin Cancer Res ; 28(24): 5359-5367, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36228155

ABSTRACT

PURPOSE: Gallbladder carcinoma (GBC) is an uncommon and aggressive disease, which remains poorly defined at a molecular level. Here, we aimed to characterize the molecular landscape of GBC and identify markers with potential prognostic and therapeutic implications. EXPERIMENTAL DESIGN: GBC samples were analyzed using the MSK-IMPACT (Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets) platform (targeted NGS assay that analyzes 505 cancer-associated genes). Variants with therapeutic implications were identified using OncoKB database. The associations between recurrent genetic alterations and clinicopathologic characteristics (Fisher exact tests) or overall survival (univariate Cox regression) were evaluated. P values were adjusted for multiple testing. RESULTS: Overall, 244 samples (57% primary tumors and 43% metastases) from 233 patients were studied (85% adenocarcinomas, 10% carcinomas with squamous differentiation, and 5% neuroendocrine carcinomas). The most common oncogenic molecular alterations appeared in the cell cycle (TP53 63% and CDKN2A 21%) and RTK_RAS pathways (ERBB2 15% and KRAS 11%). No recurrent structural variants were identified. There were no differences in the molecular landscape of primary and metastasis samples. Variants in SMAD4 and STK11 independently associated with reduced survival in patients with metastatic disease. Alterations considered clinically actionable in GBC or other solid tumor types (e.g., NTRK1 fusions or oncogenic variants in ERBB2, PIK3CA, or BRCA1/2) were identified in 35% of patients; 18% of patients with metastatic disease were treated off-label or enrolled in a clinical trial based on molecular findings. CONCLUSIONS: GBC is a genetically diverse malignancy. This large-scale genomic analysis revealed alterations with potential prognostic and therapeutic implications and provides guidance for the development of targeted therapies.


Subject(s)
Adenocarcinoma , Carcinoma, Neuroendocrine , Gallbladder Neoplasms , Humans , Gallbladder Neoplasms/genetics , Mutation , Adenocarcinoma/genetics , Prognosis , Biomarkers, Tumor/genetics
9.
Cancer Discov ; 12(11): 2552-2565, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36048199

ABSTRACT

Accurate ancestry inference is critical for identifying genetic contributors of cancer disparities among populations. Although methods to infer genetic ancestry have historically relied upon genome-wide markers, the adaptation to targeted clinical sequencing panels presents an opportunity to incorporate ancestry inference into routine diagnostic workflows. We show that global ancestral contributions and admixture of continental populations can be quantitatively inferred using markers captured by the MSK-IMPACT clinical panel. In a pan-cancer cohort of 45,157 patients, we observed differences by ancestry in the frequency of somatic alterations, recapitulating known associations and revealing novel associations. Despite the comparable overall prevalence of driver alterations by ancestry group, the proportion of patients with clinically actionable alterations was lower for African (30%) compared with European (33%) ancestry. Although this result is largely explained by population-specific cancer subtype differences, it reveals an inequity in the degree to which different populations are served by existing precision oncology interventions. SIGNIFICANCE: We performed a comprehensive analysis of ancestral associations with somatic mutations in a real-world pan-cancer cohort, including >5,000 non-European individuals. Using an FDA-authorized tumor sequencing panel and an FDA-recognized oncology knowledge base, we detected differences in the prevalence of clinically actionable alterations, potentially contributing to health care disparities affecting underrepresented populations. This article is highlighted in the In This Issue feature, p. 2483.


Subject(s)
Neoplasms , White People , Humans , Genetics, Population , Polymorphism, Single Nucleotide , Precision Medicine
10.
Cancer Epidemiol Biomarkers Prev ; 31(2): 362-371, 2022 02.
Article in English | MEDLINE | ID: mdl-34810208

ABSTRACT

BACKGROUND: Cancer survivors are developing more subsequent tumors. We sought to characterize patients with multiple (≥2) primary cancers (MPC) to assess associations and genetic mechanisms. METHODS: Patients were prospectively consented (01/2013-02/2019) to tumor-normal sequencing via a custom targeted panel (MSK-IMPACT). A subset consented to return of results of ≥76 cancer predisposition genes. International Agency for Research on Cancer (IARC) 2004 rules for defining MPC were applied. Tumor pairs were created to assess relationships between cancers. Age-adjusted, sex-specific, standardized incidence ratios (SIR) for first to second cancer event combinations were calculated using SEER rates, adjusting for confounders and time of ascertainment. Associations were made with germline and somatic variants. RESULTS: Of 24,241 patients, 4,340 had MPC (18%); 20% were synchronous. Most (80%) had two primaries; however, 4% had ≥4 cancers. SIR analysis found lymphoma-lung, lymphoma-uterine, breast-brain, and melanoma-lung pairs in women and prostate-mesothelioma, prostate-sarcoma, melanoma-stomach, and prostate-brain pairs in men in excess of expected after accounting for synchronous tumors, known inherited cancer syndromes, and environmental exposures. Of 1,580 (36%) patients who received germline results, 324 (21%) had 361 pathogenic/likely pathogenic variants (PV), 159 (44%) in high penetrance genes. Of tumor samples analyzed, 55% exhibited loss of heterozygosity at the germline variant. In those with negative germline findings, melanoma, prostate, and breast cancers were common. CONCLUSIONS: We identified tumor pairs without known predisposing mutations that merit confirmation and will require novel strategies to elucidate genetic mechanisms of shared susceptibilities. IMPACT: If verified, patients with MPC with novel phenotypes may benefit from targeted cancer surveillance.


Subject(s)
Melanoma , Neoplasms, Multiple Primary , Neoplasms, Second Primary , Prostatic Neoplasms , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male , Melanoma/epidemiology , Melanoma/genetics , Neoplasms, Multiple Primary/epidemiology , Neoplasms, Multiple Primary/genetics , Neoplasms, Second Primary/epidemiology , Neoplasms, Second Primary/genetics , Prostatic Neoplasms/genetics
12.
Nat Commun ; 12(1): 3199, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045463

ABSTRACT

In patients with metastatic cancer, spatial heterogeneity of somatic alterations may lead to incomplete assessment of a cancer's mutational profile when analyzing a single tumor biopsy. In this study, we perform sequencing of cell-free DNA (cfDNA) and distinct metastatic tissue samples from ten rapid autopsy cases with pre-treated metastatic cancer. We show that levels of heterogeneity in genetic biomarkers vary between patients but that gene expression signatures representative of the tumor microenvironment are more consistent. Across nine patients with plasma samples available, we are able to detect 62/62 truncal and 47/121 non-truncal point mutations in cfDNA. We observe that mutation clonality in cfDNA is correlated with the number of metastatic lesions in which the mutation is detected and use this result to derive a clonality threshold to classify truncal and non-truncal driver alterations with reasonable specificity. In contrast, mutation truncality is more often incorrectly assigned when studying single tissue samples. Our results demonstrate the utility of a single cfDNA sample relative to that of single tissue samples when treating patients with metastatic cancer.


Subject(s)
Autopsy/methods , Circulating Tumor DNA/genetics , DNA Mutational Analysis/methods , Neoplasms/diagnosis , Tumor Microenvironment/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Chemoradiotherapy, Adjuvant , Cohort Studies , DNA Copy Number Variations , Female , Genetic Heterogeneity , Humans , Male , Neoadjuvant Therapy , Neoplasms/blood , Neoplasms/pathology , Neoplasms/therapy , Point Mutation , RNA-Seq , Reference Values , Sensitivity and Specificity , Spatial Analysis , Time Factors , Exome Sequencing
13.
Ophthalmol Sci ; 1(1): 100015, 2021 Mar.
Article in English | MEDLINE | ID: mdl-36246006

ABSTRACT

Purpose: Analysis of circulating tumor DNA (ctDNA) in the plasma of patients with retinoblastoma and simulating lesions. Design: Retrospective cross-sectional study of the association of plasma ctDNA from retinoblastoma and simulating lesions with disease course. Participants: Fifty-eight Memorial Sloan Kettering Cancer Center patients with retinoblastoma comprising 68 plasma ctDNA samples and 5 with retinoblastoma-simulating lesions. Methods: The ctDNA analyzed with hybridization capture and next-generation sequencing in blood (plasma) of patients who had retinoblastoma or simulating lesions were evaluated for association with clinical course of the disease. Main Outcome Measures: Presence or absence of molecular aberrations in the RB1 gene and correlations with clinical features. Results: RB1 cell-free DNA (cfDNA) was detected in 16 of 19 patients with newly diagnosed, untreated intraocular retinoblastoma and in 3 of 3 patients with newly diagnosed, untreated metastatic disease. It was also present in 3 patients with recurrent intraocular disease before therapy, but was not present in patients with recurrent disease who received intra-arterial chemotherapy, nor in 21 patients who had undergone enucleation for unilateral disease. In 1 patient who had delayed treatment (insurance reasons) and showed rapid growth of the intraocular tumor, the variant allele frequency increased in 1 month from 0.34% to 2.48%. No RB1 mutations were detected in the cfDNA from plasma of patients with simulating lesions (3 with Coats disease and 1 with persistent fetal vasculature [PFV]). In 2 patients, we identified 2 independent RB1 mutations in plasma. Conclusions: Mutations in RB1 were found in the cfDNA from blood of patients with newly diagnosed, untreated retinoblastoma and in patients who showed disease recurrence in the eye after prior treatment, but not in unilateral retinoblastoma after enucleation Levels of ctDNA increase in patients with progressive disease who did not receive any treatment. High plasma cfDNA levels were detected in patients with newly diagnosed metastatic disease, and these levels decreased after systemic chemotherapy was administered. Further validation is needed for measuring the somatic alterations in cfDNA from blood in retinoblastoma that could provide a promising method of monitoring patients in the future.

14.
Clin Cancer Res ; 27(3): 799-806, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33172896

ABSTRACT

PURPOSE: MET tyrosine kinase inhibitors (TKIs) can achieve modest clinical outcomes in MET exon 14-altered lung cancers, likely secondary to primary resistance. Mechanisms of primary resistance remain poorly characterized and comprehensive proteomic analyses have not previously been performed. EXPERIMENTAL DESIGN: We performed hybrid capture-based DNA sequencing, targeted RNA sequencing, cell-free DNA sequencing, selected reaction monitoring mass spectrometry (SRM-MS), and immunohistochemistry on patient samples of MET exon 14-altered lung cancers treated with a MET TKI. Associations between overall response rate (ORR), progression-free survival (PFS), and putative genomic alterations and MET protein expression were evaluated. RESULTS: Seventy-five of 168 MET exon 14-altered lung cancers received a MET TKI. Previously undescribed (zygosity, clonality, whole-genome duplication) and known (copy-number focality, tumor mutational burden, mutation region/type) genomic factors were not associated with ORR/PFS (P > 0.05). In contrast, MET expression was associated with MET TKI benefit. Only cases with detectable MET expression by SRM-MS (N = 15) or immunochemistry (N = 22) responded to MET TKI therapy, and cancers with H-score ≥ 200 had a higher PFS than cancers below this cutoff (10.4 vs. 5.5 months, respectively; HR, 3.87; P = 0.02). CONCLUSIONS: In MET exon 14-altered cancers treated with a MET TKI, a comprehensive analysis of previously unknown and known genomic factors did not identify a genomic mechanism of primary resistance. Instead, MET expression correlated with benefit, suggesting the potential role of interrogating the proteome in addition to the genome in confirmatory prospective trials.


Subject(s)
Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/antagonists & inhibitors , DNA Mutational Analysis , Exons/genetics , Female , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Progression-Free Survival , Prospective Studies , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/antagonists & inhibitors
15.
Ophthalmol Sci ; 1(3): 100042, 2021 Sep.
Article in English | MEDLINE | ID: mdl-36247821

ABSTRACT

Purpose: Circulating tumor DNA (ctDNA) is released by many tumors into the plasma. Its analysis has minimal procedural risk and, in many cancers, has the potential for clinical applications. In retinoblastoma, the clinical correlations of ctDNA in eyes treated without enucleation have not been studied. This purpose of this study was to determine how the ctDNA RB1 variant allele frequency (VAF) changes in patients with unilateral retinoblastoma after intra-arterial chemotherapy (IAC) treatment. Variant allele frequency is a proxy for tumor fraction. Design: Case series from a single tertiary cancer referral center. Participants: Five patients with retinoblastoma with at least 1 measurable ctDNA plasma specimen both at the time of active intraocular retinoblastoma before IAC and after at least 1 IAC cycle. Methods: Circulating tumor DNA RB1 was detected and VAF was measured before and after IAC treatment. Clinical correlations were made using clinical examination, fundus photography, ultrasound, and OCT. Main Outcome Measures: Comparison of ctDNA RB1 VAF before and after IAC treatment for retinoblastoma and concordance of ctDNA RB1 detectability with activity of intraocular disease. Results: Twenty-three ctDNA specimens were included from 5 patients. The 5 baseline RB1 VAFs ranged from 0.27% to 4.23%. In all patients, the subsequent post-intra-arterial RB1 VAF was lower than baseline (0.0%-0.17%). At 4 months (2 months after IAC completion), the ctDNA consistently was negative in the patients who demonstrated clinically inactive intraocular disease. Conclusions: In this small cohort, a decremental decrease in ctDNA RB1 VAF was found after IAC, suggesting that relative VAF changes could be a biomarker of treatment response.

16.
Hum Pathol ; 102: 44-53, 2020 08.
Article in English | MEDLINE | ID: mdl-32599083

ABSTRACT

E-cadherin (ECAD) immunohistochemical (IHC) expression is lost in ∼90% of invasive lobular carcinomas (ILCs) owing to genomic alterations of CDH1. We examined morphologic features and ECAD IHC expression in invasive breast carcinomas (BCs) with known CDH1 alterations. Between January 2014 and May 2018, 202 cases of BC with a CDH1 somatic alteration were identified. ECAD expression was lost in 77% (155/202) of cases and was retained in 23% (47/202) cases. Most (90%, 139/155) ECAD-negative cases were morphologically classified as ILC, while the remaining (10%, 16/155) were invasive mammary carcinoma with mixed ductal and lobular features (IMC). Of 47 cases with ECAD staining, 62% (29/47) were classified as ILC, 23% (11/47) were classified as IMC, and 15% (7/47) were classified as invasive ductal carcinoma (IDC). Of note, 51% (24/47) of ECAD-positive cases were initially diagnosed as IDC or IMC based on ECAD expression alone. For ECAD-negative BCs, 98% (152/155) of CDH1 alterations were truncating, and 2% (3/155) were variants of unknown significance (VUS). Truncating CDH1 alterations were identified in the majority of ECAD-positive BCs (72%, 34/47); however, VUS-type CDH1 alterations were more prevalent (28%, 13/47) in ECAD-positive BCs than in ECAD-negative BCs. Although 90% of ECAD-negative tumors were compatible with ILC in this study, 17% (29/168) of ILC cases were ECAD positive. In addition, CDH1 truncating alterations were seen in ECAD-positive ILC, supporting the notion of aberrant ECAD staining. Therefore, ECAD IHC expression must be interpreted in conjunction with morphology, and BC with classic histologic features of ILC should not be reclassified as IDC/IMC based solely on the status of ECAD IHC expression.


Subject(s)
Antigens, CD/genetics , Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Cadherins/genetics , Carcinoma, Lobular/pathology , Antigens, CD/biosynthesis , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Cadherins/biosynthesis , Carcinoma, Lobular/diagnosis , Carcinoma, Lobular/genetics , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Immunohistochemistry , Mutation
17.
Mol Cancer Ther ; 19(4): 1031-1039, 2020 04.
Article in English | MEDLINE | ID: mdl-32029634

ABSTRACT

Up to 50% of patients with uveal melanoma (UM) develop metastatic disease, for which there is no effective systemic treatment. This study aimed to evaluate the safety and efficacy of the orally available protein kinase C inhibitor, AEB071, in patients with metastatic UM, and to perform genomic profiling of metastatic tumor samples, with the aim to propose combination therapies. Patients with metastatic UM (n = 153) were treated with AEB071 in a phase I, single-arm study. Patients received total daily doses of AEB071 ranging from 450 to 1,400 mg. First-cycle dose-limiting toxicities were observed in 13 patients (13%). These were most commonly gastrointestinal system toxicities and were dose related, occurring at doses ≥700 mg/day. Preliminary clinical activity was observed, with 3% of patients achieving a partial response and 50% with stable disease (median duration 15 weeks). High-depth, targeted next-generation DNA sequencing was performed on 89 metastatic tumor biopsy samples. Mutations previously identified in UM were observed, including mutations in GNAQ, GNA11, BAP1, SF3B1, PLCB4, and amplification of chromosome arm 8q. GNAQ/GNA11 mutations were observed at a similar frequency (93%) as previously reported, confirming a therapeutic window for inhibition of the downstream effector PKC in metastatic UM.In conclusion, the protein kinase C inhibitor AEB071 was well tolerated, and modest clinical activity was observed in metastatic UM. The genomic findings were consistent with previous reports in primary UM. Together, our data allow envisaging combination therapies of protein kinase C inhibitors with other compounds in metastatic UM.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Melanoma/drug therapy , Protein Kinase C/antagonists & inhibitors , Pyrroles/pharmacology , Quinazolines/pharmacology , Uveal Neoplasms/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Gene Expression Profiling , Humans , Male , Maximum Tolerated Dose , Melanoma/genetics , Melanoma/pathology , Middle Aged , Neoplasm Metastasis , Prognosis , Pyrroles/pharmacokinetics , Quinazolines/pharmacokinetics , Tissue Distribution , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Young Adult
18.
JCO Precis Oncol ; 20182018.
Article in English | MEDLINE | ID: mdl-29376144

ABSTRACT

PURPOSE: ALK rearrangements predict for sensitivity to ALK tyrosine kinase inhibitors (TKIs). However, responses to ALK TKIs are generally short-lived. Serial molecular analysis is an informative strategy for identifying genetic mediators of resistance. Although multiple studies support the clinical benefits of repeat tissue sampling, the clinical utility of longitudinal circulating tumor DNA analysis has not been established in ALK-positive lung cancer. METHODS: Using a 566-gene hybrid-capture next-generation sequencing (NGS) assay, we performed longitudinal analysis of plasma specimens from 22 ALK-positive patients with acquired resistance to ALK TKIs to track the evolution of resistance during treatment. To determine tissue-plasma concordance, we compared plasma findings to results of repeat biopsies. RESULTS: At progression, we detected an ALK fusion in plasma from 19 (86%) of 22 patients, and identified ALK resistance mutations in plasma specimens from 11 (50%) patients. There was 100% agreement between tissue- and plasma-detected ALK fusions. Among 16 cases where contemporaneous plasma and tissue specimens were available, we observed 100% concordance between ALK mutation calls. ALK mutations emerged and disappeared during treatment with sequential ALK TKIs, suggesting that plasma mutation profiles were dependent on the specific TKI administered. ALK G1202R, the most frequent plasma mutation detected after progression on a second-generation TKI, was consistently suppressed during treatment with lorlatinib. CONCLUSIONS: Plasma genotyping by NGS is an effective method for detecting ALK fusions and ALK mutations in patients progressing on ALK TKIs. The correlation between plasma ALK mutations and response to distinct ALK TKIs highlights the potential for plasma analysis to guide selection of ALK-directed therapies.

19.
Source Code Biol Med ; 11: 13, 2016.
Article in English | MEDLINE | ID: mdl-27999612

ABSTRACT

BACKGROUND: Matched sequencing of both tumor and normal tissue is routinely used to classify variants of uncertain significance (VUS) into somatic vs. germline. However, assays used in molecular diagnostics focus on known somatic alterations in cancer genes and often only sequence tumors. Therefore, an algorithm that reliably classifies variants would be helpful for retrospective exploratory analyses. Contamination of tumor samples with normal cells results in differences in expected allelic fractions of germline and somatic variants, which can be exploited to accurately infer genotypes after adjusting for local copy number. However, existing algorithms for determining tumor purity, ploidy and copy number are not designed for unmatched short read sequencing data. RESULTS: We describe a methodology and corresponding open source software for estimating tumor purity, copy number, loss of heterozygosity (LOH), and contamination, and for classification of single nucleotide variants (SNVs) by somatic status and clonality. This R package, PureCN, is optimized for targeted short read sequencing data, integrates well with standard somatic variant detection pipelines, and has support for matched and unmatched tumor samples. Accuracy is demonstrated on simulated data and on real whole exome sequencing data. CONCLUSIONS: Our algorithm provides accurate estimates of tumor purity and ploidy, even if matched normal samples are not available. This in turn allows accurate classification of SNVs. The software is provided as open source (Artistic License 2.0) R/Bioconductor package PureCN (http://bioconductor.org/packages/PureCN/).

20.
Nat Commun ; 7: 13131, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27713405

ABSTRACT

Renal cell carcinomas with unclassified histology (uRCC) constitute a significant portion of aggressive non-clear cell renal cell carcinomas that have no standard therapy. The oncogenic drivers in these tumours are unknown. Here we perform a molecular analysis of 62 high-grade primary uRCC, incorporating targeted cancer gene sequencing, RNA sequencing, single-nucleotide polymorphism array, fluorescence in situ hybridization, immunohistochemistry and cell-based assays. We identify recurrent somatic mutations in 29 genes, including NF2 (18%), SETD2 (18%), BAP1 (13%), KMT2C (10%) and MTOR (8%). Integrated analysis reveals a subset of 26% uRCC characterized by NF2 loss, dysregulated Hippo-YAP pathway and worse survival, whereas 21% uRCC with mutations of MTOR, TSC1, TSC2 or PTEN and hyperactive mTORC1 signalling are associated with better clinical outcome. FH deficiency (6%), chromatin/DNA damage regulator mutations (21%) and ALK translocation (2%) distinguish additional cases. Altogether, this study reveals distinct molecular subsets for 76% of our uRCC cohort, which could have diagnostic and therapeutic implications.


Subject(s)
Carcinoma, Renal Cell/genetics , DNA Damage/genetics , Kidney Neoplasms/genetics , Neoplasm Proteins/genetics , Tumor Suppressor Proteins/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , HEK293 Cells , Histone-Lysine N-Methyltransferase/genetics , Humans , In Situ Hybridization, Fluorescence , Kidney Neoplasms/pathology , Neurofibromatosis 2/genetics , Polymorphism, Single Nucleotide/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , Ubiquitin Thiolesterase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...