Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 4(3): 919-937, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38546390

ABSTRACT

Lung cancer is the leading cause of cancer deaths. Lethal pulmonary adenocarcinomas (ADC) present with frequent mutations in the EGFR. Genetically engineered murine models of lung cancer expedited comprehension of the molecular mechanisms driving tumorigenesis and drug response. Here, we systematically analyzed the evolution of tumor heterogeneity in the context of dynamic interactions occurring with the intermingled tumor microenvironment (TME) by high-resolution transcriptomics. Our effort identified vulnerable tumor-specific epithelial cells, as well as their cross-talk with niche components (endothelial cells, fibroblasts, and tumor-infiltrating immune cells), whose symbiotic interface shapes tumor aggressiveness and is almost completely abolished by treatment with Unesbulin, a tubulin binding agent that reduces B cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) activity. Simultaneous magnetic resonance imaging (MRI) analysis demonstrated decreased tumor growth, setting the stage for future investigations into the potential of novel therapeutic strategies for EGFR-mutant ADCs. SIGNIFICANCE: Targeting the TME is an attractive strategy for treatment of solid tumors. Here we revealed how EGFR-mutant landscapes are affected at the single-cell resolution level during Unesbulin treatment. This novel drug, by targeting cancer cells and their interactions with crucial TME components, could be envisioned for future therapeutic advancements.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Endothelial Cells , Tumor Microenvironment/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Cell Communication , ErbB Receptors/genetics
2.
Commun Biol ; 4(1): 370, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854168

ABSTRACT

Lung cancer is the leading cause of cancer deaths. Tumor heterogeneity, which hampers development of targeted therapies, was herein deconvoluted via single cell RNA sequencing in aggressive human adenocarcinomas (carrying Kras-mutations) and comparable murine model. We identified a tumor-specific, mutant-KRAS-associated subpopulation which is conserved in both human and murine lung cancer. We previously reported a key role for the oncogene BMI-1 in adenocarcinomas. We therefore investigated the effects of in vivo PTC596 treatment, which affects BMI-1 activity, in our murine model. Post-treatment, MRI analysis showed decreased tumor size, while single cell transcriptomics concomitantly detected near complete ablation of the mutant-KRAS-associated subpopulation, signifying the presence of a pharmacologically targetable, tumor-associated subpopulation. Our findings therefore hold promise for the development of a targeted therapy for KRAS-mutant adenocarcinomas.


Subject(s)
Benzimidazoles/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Epithelial Cells/drug effects , Lung Neoplasms/drug therapy , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Pyrazines/pharmacology , A549 Cells , Animals , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Molecular Targeted Therapy , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA-Seq , Single-Cell Analysis , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
3.
Br J Haematol ; 190(6): 877-890, 2020 09.
Article in English | MEDLINE | ID: mdl-32232850

ABSTRACT

Future progress in the treatment of multiple myeloma (MM) requires both the characterisation of key drivers of the disease and novel, innovative approaches to tackle these vulnerabilities. The present study focussed on the pre-clinical evaluation of a novel drug class, BMI-1 modulators, in MM. We demonstrate potent activity of PTC-028 and PTC596 in a comprehensive set of in vitro and in vivo models, including models of drug resistance and stromal support. Treatment of MM cells with PTC-028 and PTC596 downregulated BMI-1 protein levels, which was found to correlate with drug activity. Surprisingly, BMI-1 was dispensable for the activity of BMI-1 modulators and MM cell growth. Our data rather point to mitotic arrest accompanied by myeloid cell leukaemia-1 (MCL-1) loss as key anti-MM mechanisms and reveal impaired MYC and AKT signalling activity due to BMI-1 modulator treatment. Moreover, we observed a complete eradication of MM after PTC596 treatment in the 5TGM.1 in vivo model and define epigenetic compounds and B cell leukaemia/lymphoma 2 homology domain 3 (BH3) mimetics as promising combination partners. These results bring into question the postulated role of BMI-1 as an essential MM gene and confirm BMI-1 modulators as potent anti-mitotic agents with encouraging pre-clinical activity that supports their rapid translation into clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Mitosis/drug effects , Multiple Myeloma , Neoplasm Proteins/antagonists & inhibitors , Neoplasms, Experimental , Polycomb Repressive Complex 1/antagonists & inhibitors , Pyrazines/pharmacology , Animals , Female , Humans , Male , Mice , Multiple Myeloma/diet therapy , Multiple Myeloma/enzymology , Multiple Myeloma/pathology , Neoplasm Proteins/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/pathology , Polycomb Repressive Complex 1/metabolism , Xenograft Model Antitumor Assays
4.
Mol Cancer Ther ; 18(1): 3-16, 2019 01.
Article in English | MEDLINE | ID: mdl-30352802

ABSTRACT

PTC299 was identified as an inhibitor of VEGFA mRNA translation in a phenotypic screen and evaluated in the clinic for treatment of solid tumors. To guide precision cancer treatment, we performed extensive biological characterization of the activity of PTC299 and demonstrated that inhibition of VEGF production and cell proliferation by PTC299 is linked to a decrease in uridine nucleotides by targeting dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme for de novo pyrimidine nucleotide synthesis. Unlike previously reported DHODH inhibitors that were identified using in vitro enzyme assays, PTC299 is a more potent inhibitor of DHODH in isolated mitochondria suggesting that mitochondrial membrane lipid engagement in the DHODH conformation in situ is required for its optimal activity. PTC299 has broad and potent activity against hematologic cancer cells in preclinical models, reflecting a reduced pyrimidine nucleotide salvage pathway in leukemia cells. Archived serum samples from patients treated with PTC299 demonstrated increased levels of dihydroorotate, the substrate of DHODH, indicating target engagement in patients. PTC299 has advantages over previously reported DHODH inhibitors, including greater potency, good oral bioavailability, and lack of off-target kinase inhibition and myelosuppression, and thus may be useful for the targeted treatment of hematologic malignancies.


Subject(s)
Hematologic Neoplasms/drug therapy , Imidazoles/administration & dosage , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Thiazoles/administration & dosage , Vascular Endothelial Growth Factor A/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dihydroorotate Dehydrogenase , Hematologic Neoplasms/blood , Hematologic Neoplasms/enzymology , Humans , Imidazoles/pharmacology , K562 Cells , Mice , Oxidoreductases Acting on CH-CH Group Donors/blood , Thiazoles/pharmacology , Xenograft Model Antitumor Assays
5.
PLoS One ; 13(10): e0206158, 2018.
Article in English | MEDLINE | ID: mdl-30359426

ABSTRACT

Nonsense mutations, resulting in a premature stop codon in the open reading frame of mRNAs are responsible for thousands of inherited diseases. Readthrough of premature stop codons by small molecule drugs has emerged as a promising therapeutic approach to treat disorders resulting from premature termination of translation. The aminoglycoside antibiotics are a class of molecule known to promote readthrough at premature termination codons. Gentamicin consists of a mixture of major and minor aminoglycoside components. Here, we investigated the readthrough activities of the individual components and show that each of the four major gentamicin complex components representing 92-99% of the complex each had similar potency and activity to that of the complex itself. In contrast, a minor component (gentamicin X2) was found to be the most potent and active readthrough component in the gentamicin complex. The known oto- and nephrotoxicity associated with aminoglycosides preclude long-term use as readthrough agents. Thus, we evaluated the components of the gentamicin complex as well as the so-called "designer" aminoglycoside, NB124, for in vitro and in vivo safety. In cells, we observed that gentamicin X2 had a safety/readthrough ratio (cytotoxicity/readthrough potency) superior to that of gentamicin, G418 or NB124. In rodents, we observed that gentamicin X2 showed a safety profile that was superior to G418 overall including reduced nephrotoxicity. These results support further investigation of gentamicin X2 as a therapeutic readthrough agent.


Subject(s)
Codon, Nonsense/chemical synthesis , Genetic Diseases, Inborn/drug therapy , Gentamicins/pharmacology , Protein Synthesis Inhibitors/pharmacology , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Animals , Antibiotics, Antineoplastic/pharmacology , Cells, Cultured , Codon, Terminator/chemical synthesis , Embryo, Nonmammalian , Gentamicins/chemistry , Gentamicins/therapeutic use , Humans , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Male , Open Reading Frames/drug effects , Open Reading Frames/genetics , Protein Synthesis Inhibitors/therapeutic use , Rats , Rats, Sprague-Dawley , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...