Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 2289, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085556

ABSTRACT

The galvanostatic intermittent titration technique (GITT) is considered the go-to method for determining the Li+ diffusion coefficients in insertion electrode materials. However, GITT-based methods are either time-consuming, prone to analysis pitfalls or require sophisticated interpretation models. Here, we propose the intermittent current interruption (ICI) method as a reliable, accurate and faster alternative to GITT-based methods. Using Fick's laws, we prove that the ICI method renders the same information as the GITT within a certain duration of time since the current interruption. Via experimental measurements, we also demonstrate that the results from ICI and GITT methods match where the assumption of semi-infinite diffusion applies. Moreover, the benefit of the non-disruptive ICI method to operando materials characterization is exhibited by correlating the continuously monitored diffusion coefficient of Li+ in a LiNi0.8Mn0.1Co0.1O2-based electrode to its structural changes captured by operando X-ray diffraction measurements.

2.
Dalton Trans ; 51(38): 14712-14720, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36102869

ABSTRACT

Among Prussian blue analogues (PBAs), NaxFe[Fe(CN)6]1-y·nH2O is a highly attractive cathode material for sodium-ion batteries due to its high theoretical capacity of ∼170 mA h g-1 and inexpensive raw materials. However, concerns remain over its long-term electrochemical performance and structural factors which impact sources of resistance in the material and subsequently rate performance. Refined control of the [Fe(CN)6] vacancies and water content could help in realizing its market potential. In this context, we have studied a low-defect Berlin green (BG) Na0.30(5)Fe[Fe(CN)6]0.94(2)·nH2O with varied water content corresponding to 10, 8, 6, and 2 wt%. The impact of water on the electrochemical properties of BG was systematically investigated. The electrodes were cycled within a narrow voltage window of 3.15-3.8 V vs. Na/Na+ to avoid undesired phase transitions and side reactions while preserving the cubic structure. We demonstrate that thermal dehydration leads to a significantly improved cycling stability of over 300 cycles at 15 mA g-1 with coulombic efficiency of >99.9%. In particular, the electrode with the lowest water content exhibited the fastest Na+-ion insertion/extraction as evidenced by the larger CV peak currents during successive scans compared to hydrated samples. The results provide fundamental insight for designing PBAs as electrode materials with enhanced electrochemical performance in energy storage applications.

3.
Dalton Trans ; 51(11): 4435-4446, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35226039

ABSTRACT

Li- and Mn-rich layered oxides are promising positive electrode materials for future Li-ion batteries. The presence of crystallographic features such as cation-mixing and stacking faults in these compounds make them highly susceptible to synthesis-induced structural changes. Consequently, significant variations exist in the reported structure of these compounds that complicate the understanding of how the crystallographic structure influences its properties. This work investigates the synthesis-structure relations for three widely investigated Li- and Mn-rich layered oxides: Li2MnO3, Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2. For each compound, the average structure is compared between two synthetic routes of differing degrees of precursor mixing and four annealing protocols. Furthermore, thermodynamic and synthesis-specific kinetic factors governing the equilibrium crystallography of each composition are considered. It was found that the structures of these compounds are thermodynamically metastable under the synthesis conditions employed. In addition to a driving force to reduce stacking faults in the structure, these compositions also exhibited a tendency to undergo structural transformations to more stable phases under more intense annealing conditions. Increasing the compositional complexity introduced a kinetic barrier to structural ordering, making Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2 generally more faulted relative to Li2MnO3. Additionally, domains with different degrees of faulting were found to co-exist in the compounds. This study offers insight into the highly synthesis-dependent subtle structural complexities present in these compounds and complements the substantial efforts that have been undertaken to understand and optimise its electrochemical properties.

4.
ACS Appl Mater Interfaces ; 13(8): 10054-10063, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33599484

ABSTRACT

The high-theoretical-capacity (∼170 mAh/g) Prussian white (PW), NaxFe[Fe(CN)6]y·nH2O, is one of the most promising candidates for Na-ion batteries on the cusp of commercialization. However, it has limitations such as high variability of reported stable practical capacity and cycling stability. A key factor that has been identified to affect the performance of PW is water content in the structure. However, the impact of airborne moisture exposure on the electrochemical performance of PW and the chemical mechanisms leading to performance decay have not yet been explored. Herein, we for the first time systematically studied the influence of humidity on the structural and electrochemical properties of monoclinic hydrated (M-PW) and rhombohedral dehydrated (R-PW) Prussian white. It is identified that moisture-driven capacity fading proceeds via two steps, first by sodium from the bulk material reacting with moisture at the surface to form sodium hydroxide and partial oxidation of Fe2+ to Fe3+. The sodium hydroxide creates a basic environment at the surface of the PW particles, leading to decomposition to Na4[Fe(CN)6] and iron oxides. Although the first process leads to loss of capacity, which can be reversed, the second stage of degradation is irreversible. Over time, both processes lead to the formation of a passivating surface layer, which prevents both reversible and irreversible capacity losses. This study thus presents a significant step toward understanding the large performance variations presented in the literature for PW. From this study, strategies aimed at limiting moisture-driven degradation can be designed and their efficacy assessed.

5.
Dalton Trans ; 49(11): 3570-3579, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32124896

ABSTRACT

Rechargeable sodium-ion batteries are the most attractive substitutes for lithium-ion batteries in large-scale energy storage devices due to wide spread reserves and low-cost of sodium resources and the similarities between sodium and lithium chemistry. However, finding a suitable cathode material is still a hurdle to be overcome. To date, Prussian white (PW), NaxFe[Fe(CN)6]y·nH2O has stood out as one of the most promising Na-host materials due to its low cost, facile synthesis and competitive electrochemical capacity. Despite this, there are concerns that this material will thermally decompose at relatively low temperatures to form cyanogen gas, which is a safety hazard. Thus, low vacancy NaxFe[Fe(CN)6]y·nH2O (x = 1.5, 1, 0.5 and 0) has been synthesized, and the influence of x on its thermal behavior systematically investigated. It is demonstrated that the thermal decomposition temperature, water content and moisture sensitivity of the samples strongly depend on the sodium content. The sample with x = 1.5 is found to be the most thermally stable and has the highest water content under the same experimental conditions. In addition, the sodium-rich samples (x = 1.5, 1 and 0.5) have higher surface water than the sodium-deficient one (x = 0). The local structure for this sample is also very different to the sodium-rich ones. Our findings offer new insights into the profound implications of proper material handling and safer operating conditions for practical Na-ion batteries and may be extended to analogous systems.

6.
J Am Chem Soc ; 142(3): 1449-1456, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31889440

ABSTRACT

Operando X-ray diffraction (XRD) is a valuable tool for studying secondary battery materials as it allows for the direct correlation of electrochemical behavior with structural changes of crystalline active materials. This is especially true for the lithium-sulfur chemistry, in which energy storage capability depends on the complex growth and dissolution kinetics of lithium sulfide (Li2S) and sulfur (S8) during discharge and charge, respectively. In this work, we present a novel development of this method through combining operando XRD with simultaneous and continuous resistance measurement using an intermittent current interruption (ICI) method. We show that a coefficient of diffusion resistance, which reflects the transport properties in the sulfur/carbon composite electrode, can be determined from analysis of each current interruption. Its relationship to the established Warburg impedance model is validated theoretically and experimentally. We also demonstrate for an optimized electrode formulation and cell construction that the diffusion resistance increases sharply at the discharge end point, which is consistent with the blocking of pores in the carbon host matrix. The combination of XRD with ICI allows for a direct correlation of structural changes with not only electrochemical properties but also energy loss processes at a nonequilibrium state and, therefore, is a valuable technique for the study of a wide range of energy storage chemistries.

7.
ACS Appl Mater Interfaces ; 12(5): 5939-5950, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31913594

ABSTRACT

With the potential of delivering reversible capacities of up to 300 mAh/g, Li-rich transition-metal oxides hold great promise as cathode materials for future Li-ion batteries. However, a cohesive synthesis-structure-electrochemistry relationship is still lacking for these materials, which impedes progress in the field. This work investigates how and why different synthesis routes, specifically solid-state and modified Pechini sol-gel methods, affect the properties of Li2MnO3, a compositionally simple member of this material system. Through a comprehensive investigation of the synthesis mechanism along with crystallographic, morphological, and electrochemical characterization, the effects of different synthesis routes were found to predominantly influence the degree of stacking faults and particle morphology. That is, the modified Pechini method produced isotropic spherical particles with approximately 57% faulting and the solid-state samples possessed heterogeneous morphology with approximately 43% faulting probability. Inevitably, these differences lead to variations in electrochemical performance. This study accentuates the importance of understanding how synthesis affects the electrochemistry of these materials, which is critical considering the crystallographic and electrochemical complexities of the class of materials more generally. The methodology employed here is extendable to studying synthesis-property relationships of other compositionally complex Li-rich layered oxide systems.

8.
ACS Appl Mater Interfaces ; 10(16): 13534-13541, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29616791

ABSTRACT

Na-O2 batteries are regarded as promising candidates for energy storage. They have higher energy efficiency, rate capability, and chemical reversibility than Li-O2 batteries; in addition, sodium is cheaper and more abundant compared to lithium. However, inconsistent observations and instability of discharge products have inhibited the understanding of the working mechanism of this technology. In this work, we have investigated a number of factors that influence the stability of the discharge products. By means of in operando powder X-ray diffraction study, the influence of oxygen, sodium anode, salt, solvent, and carbon cathode were investigated. The Na metal anode and an ether-based solvent are the main factors that lead to the instability and decomposition of NaO2 in the cell environment. This fundamental insight brings new information on the working mechanism of Na-O2 batteries.

10.
Dalton Trans ; 46(22): 7253-7260, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28537310

ABSTRACT

The structures across the Sr0.8Ti0.6-xZrxNb0.4O3, 0 ≤ x ≤ 0.6, defect perovskite series were investigated using complementary synchrotron X-ray and neutron powder diffraction data. The locations of second order compositional and temperature dependent phase transitions between the high symmetry cubic Pm3[combining macron]m phase and the lower symmetry tetragonal I4/mcm phase were determined. Deviation of the oxygen x coordinate from the high symmetry value and the B-O-B bond angle from 180° as well as the tetragonal strain squared were each found to be suitable order parameters to monitor the transitions. Tolerance factor calculations confirmed that these A-site deficient perovskites retain a higher symmetry to a lower value than their fully occupied counterparts. Therefore, adjusting vacancy concentrations can be employed as a general strategy to design compounds with specifically tailored phase transition temperatures.

11.
ChemSusChem ; 10(7): 1592-1599, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28247542

ABSTRACT

One of the major challenges in developing high-performance Li-O2 batteries is to understand the Li2 O2 formation and decomposition during battery cycling. In this study, this issue was investigated by synchrotron radiation powder X-ray diffraction. The evolution of Li2 O2 morphology and structure was observed under actual electrochemical conditions of battery operation. By quantitatively tracking Li2 O2 during discharge and charge, a two-step process was suggested for both growth and oxidation of Li2 O2 owing to different mechanisms during two stages of both oxygen reduction reaction and oxygen evolution reaction. From an observation of the anisotropic broadening of Li2 O2 in XRD patterns, it was inferred that disc-like Li2 O2 grains are formed rapidly in the first step of discharge. These grains can stack together so that they facilitate the nucleation and growth of toroidal Li2 O2 particles with a LiO2 -like surface, which could cause parasitic reactions and hinder the formation of Li2 O2 . During the charge process, Li2 O2 is firstly oxidized from the surface, followed by a delithiation process with a faster oxidation of the bulk by stripping the interlayer Li atoms to form an off-stoichiometric intermediate. This fundamental insight brings new information on the working mechanism of Li-O2 batteries.


Subject(s)
Electric Power Supplies , Lithium Compounds/chemistry , Lithium/chemistry , Oxygen/chemistry , Peroxides/chemistry , Synchrotrons , X-Ray Diffraction , Electrodes , Oxidation-Reduction
12.
J Vis Exp ; (93): e52284, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25406578

ABSTRACT

Li-ion batteries are widely used in portable electronic devices and are considered as promising candidates for higher-energy applications such as electric vehicles. However, many challenges, such as energy density and battery lifetimes, need to be overcome before this particular battery technology can be widely implemented in such applications. This research is challenging, and we outline a method to address these challenges using in situ NPD to probe the crystal structure of electrodes undergoing electrochemical cycling (charge/discharge) in a battery. NPD data help determine the underlying structural mechanism responsible for a range of electrode properties, and this information can direct the development of better electrodes and batteries. We briefly review six types of battery designs custom-made for NPD experiments and detail the method to construct the 'roll-over' cell that we have successfully used on the high-intensity NPD instrument, WOMBAT, at the Australian Nuclear Science and Technology Organisation (ANSTO). The design considerations and materials used for cell construction are discussed in conjunction with aspects of the actual in situ NPD experiment and initial directions are presented on how to analyze such complex in situ data.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Neutron Diffraction/instrumentation , Cations, Monovalent/chemistry , Electrodes , Neutron Diffraction/methods , Powder Diffraction
14.
Phys Chem Chem Phys ; 11(41): 9537-44, 2009 Nov 07.
Article in English | MEDLINE | ID: mdl-19830339

ABSTRACT

A surface formed by dense, aligned nickel nanowires (a "nanocarpet") was prepared by electrodeposition through an alumina membrane template, followed by dissolution of the membrane. The nickel nanowires forming the nanocarpet have a very high aspect ratio ( approximately 250), with a diameter of 200 nm and a length of several tens of micrometers. The nickel nanowires are highly rigid, perpendicularly aligned in the nanocarpet with respect to the substrate, and they touch each other at the tips, forming microscale "tepee"-shaped aggregates. By comparison, nanocarpets made of platinum nanowires have a more disordered, wave-like appearance. The nickel nanocarpet, once coated with a hydrophobic surfactant (stearic acid) has superhydrophobic properties (advancing contact angle approximately 158 degrees), and retains its superhydrophobicity after periods of immersion in water, similar to the hydrophobised platinum nanocarpet (advancing contact angle approximately 162 degrees). Interestingly, we observe that simple electrodeposition of platinum also produces pronounced superhydrophobic properties on "flat" copper surfaces. The magnetic properties of nickel might widen the range of applications in which nanocarpets can be gainfully used, such as in surfaces of switchable wettability for microfluidic applications.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Nanotechnology/methods , Nanowires/chemistry , Nickel/chemistry , Aluminum Oxide/chemistry , Electric Conductivity , Magnetics , Membranes, Artificial , Nanotechnology/economics , Platinum/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...