Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cell Syst ; 15(4): 388-408.e4, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38636458

ABSTRACT

Genome-wide measurement of ribosome occupancy on mRNAs has enabled empirical identification of translated regions, but high-confidence detection of coding regions that overlap annotated coding regions has remained challenging. Here, we report a sensitive and robust algorithm that revealed the translation of 388 N-terminally truncated proteins in budding yeast-more than 30-fold more than previously known. We extensively experimentally validated them and defined two classes. The first class lacks large portions of the annotated protein and tends to be produced from a truncated transcript. We show that two such cases, Yap5truncation and Pus1truncation, have condition-specific regulation and distinct functions from their respective annotated isoforms. The second class of truncated protein isoforms lacks only a small region of the annotated protein and is less likely to be produced from an alternative transcript isoform. Many display different subcellular localizations than their annotated counterpart, representing a common strategy for dual localization of otherwise functionally identical proteins. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Protein Isoforms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Genome , Saccharomyces cerevisiae Proteins/genetics , Basic-Leucine Zipper Transcription Factors
2.
bioRxiv ; 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38260653

ABSTRACT

Ded1 and Dbp1 are paralogous conserved RNA helicases that enable translation initiation in yeast. Ded1 has been heavily studied but the role of Dbp1 is poorly understood. We find that the expression of these two helicases is controlled in an inverse and condition-specific manner. In meiosis and other long-term starvation states, Dbp1 expression is upregulated and Ded1 is downregulated, whereas in mitotic cells, Dbp1 expression is extremely low. Inserting the DBP1 ORF in place of the DED1 ORF cannot replace the function of Ded1 in supporting translation, partly due to inefficient mitotic translation of the DBP1 mRNA, dependent on features of its ORF sequence but independent of codon optimality. Global measurements of translation rates and 5' leader translation, activity of mRNA-tethered helicases, ribosome association, and low temperature growth assays show that-even at matched protein levels-Ded1 is more effective than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Ded1 supports halting of translation and cell growth in response to heat stress, but Dbp1 lacks this function, as well. These functional differences in the ability to efficiently mediate translation activation and braking can be ascribed to the divergent, disordered N- and C-terminal regions of these two helicases. Altogether, our data show that Dbp1 is a "low performance" version of Ded1 that cells employ in place of Ded1 under long-term conditions of nutrient deficiency.

3.
bioRxiv ; 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37503254

ABSTRACT

Genome-wide measurements of ribosome occupancy on mRNA transcripts have enabled global empirical identification of translated regions. These approaches have revealed an unexpected diversity of protein products, but high-confidence identification of new coding regions that entirely overlap annotated coding regions - including those that encode truncated protein isoforms - has remained challenging. Here, we develop a sensitive and robust algorithm focused on identifying N-terminally truncated proteins genome-wide, identifying 388 truncated protein isoforms, a more than 30-fold increase in the number known in budding yeast. We perform extensive experimental validation of these truncated proteins and define two general classes. The first set lack large portions of the annotated protein sequence and tend to be produced from a truncated transcript. We show two such cases, Yap5 truncation and Pus1 truncation , to have condition-specific regulation and functions that appear distinct from their respective annotated isoforms. The second set of N-terminally truncated proteins lack only a small region of the annotated protein and are less likely to be regulated by an alternative transcript isoform. Many localize to different subcellular compartments than their annotated counterpart, representing a common strategy for achieving dual localization of otherwise functionally identical proteins.

4.
Annu Rev Genet ; 56: 89-112, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35878627

ABSTRACT

Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.


Subject(s)
Gametogenesis , Rejuvenation , Humans , Gametogenesis/genetics , Cellular Senescence , Quality Control , Haploidy
5.
Genetics ; 221(2)2022 05 31.
Article in English | MEDLINE | ID: mdl-35471663

ABSTRACT

Gametogenesis is an evolutionarily conserved developmental program whereby a diploid progenitor cell undergoes meiosis and cellular remodeling to differentiate into haploid gametes, the precursors for sexual reproduction. Even in the simple eukaryotic organism Saccharomyces cerevisiae, the meiotic transcriptome is very rich and complex, thereby necessitating new tools for functional studies. Here, we report the construction of 5 stage-specific, inducible complementary DNA libraries from meiotic cells that represent over 84% of the genes found in the budding yeast genome. We employed computational strategies to detect endogenous meiotic transcript isoforms as well as library-specific gene truncations. Furthermore, we developed a robust screening pipeline to test the effect of each complementary DNA on competitive fitness. Our multiday proof-of-principle time course revealed 877 complementary DNAs that were detrimental for competitive fitness when overexpressed. The list included mitochondrial proteins that cause dose-dependent disruption of cellular respiration as well as library-specific gene truncations that expose a dominant negative effect on competitive growth. Together, these high-quality complementary DNA libraries provide an important tool for systematically identifying meiotic genes, transcript isoforms, and protein domains that are important for a specific biological function.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , DNA, Complementary , Gene Library , Meiosis/genetics , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
6.
STAR Protoc ; 2(1): 100250, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33458709

ABSTRACT

Translation initiation site (TIS) profiling allows for the genome-wide identification of TISs in vivo by exclusively capturing mRNA fragments within ribosomes that have just completed translation initiation. It leverages translation inhibitors, such as harringtonine and lactimidomycin (LTM), that preferentially capture ribosomes at start codon positions, protecting TIS-derived mRNA fragments from nuclease digestion. Here, we describe a step-by-step protocol for TIS profiling in LTM-treated budding yeast that we developed to identify TISs and open reading frames in vegetative and meiotic cells. For complete details on the use and execution of this protocol, please refer to Eisenberg et al. (2020).


Subject(s)
Codon, Initiator , Open Reading Frames , Peptide Chain Initiation, Translational , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics
7.
Curr Genet ; 67(1): 49-56, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33130938

ABSTRACT

Global methods for assaying translation have greatly improved our understanding of the protein-coding capacity of the genome. In particular, it is now possible to perform genome-wide and condition-specific identification of translation initiation sites through modified ribosome profiling methods that selectively capture initiating ribosomes. Here we discuss our recent study applying such an approach to meiotic and mitotic timepoints in the simple eukaryote, budding yeast, as an example of the surprising diversity of protein products-many of which are non-canonical-that can be revealed by such methods. We also highlight several key challenges in studying non-canonical protein isoforms that have precluded their prior systematic discovery. A growing body of work supports expanded use of empirical protein-coding region identification, which can help relieve some of the limitations and biases inherent to traditional genome annotation approaches. Our study also argues for the adoption of less static views of gene identity and a broader framework for considering the translational capacity of the genome.


Subject(s)
Open Reading Frames/genetics , Protein Biosynthesis/genetics , Ribosomes/genetics , Transcriptome/genetics , Gene Expression Regulation, Fungal/genetics , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics
8.
Dev Cell ; 55(5): 525-528, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33290693
9.
Cell Syst ; 11(2): 145-160.e5, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32710835

ABSTRACT

Genomic analyses in budding yeast have helped define the foundational principles of eukaryotic gene expression. However, in the absence of empirical methods for defining coding regions, these analyses have historically excluded specific classes of possible coding regions, such as those initiating at non-AUG start codons. Here, we applied an experimental approach to globally annotate translation initiation sites in yeast and identified 149 genes with alternative N-terminally extended protein isoforms initiating from near-cognate codons upstream of annotated AUG start codons. These isoforms are produced in concert with canonical isoforms and translated with high specificity, resulting from initiation at only a small subset of possible start codons. The non-AUG initiation driving their production is enriched during meiosis and induced by low eIF5A, which is seen in this context. These findings reveal widespread production of non-canonical protein isoforms and unexpected complexity to the rules by which even a simple eukaryotic genome is decoded.


Subject(s)
Codon/metabolism , Peptide Chain Initiation, Translational/genetics , Protein Biosynthesis/genetics , Protein Isoforms/metabolism , Saccharomyces cerevisiae/genetics
10.
G3 (Bethesda) ; 9(4): 1045-1053, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30723103

ABSTRACT

We recently described an unconventional mode of gene regulation in budding yeast by which transcriptional and translational interference collaborate to down-regulate protein expression. Developmentally timed transcriptional interference inhibited production of a well translated mRNA isoform and resulted in the production of an mRNA isoform containing inhibitory upstream open reading frames (uORFs) that prevented translation of the main ORF. Transcriptional interference and uORF-based translational repression are established mechanisms outside of yeast, but whether this type of integrated regulation was conserved was unknown. Here we find that, indeed, a similar type of regulation occurs at the locus for the human oncogene MDM2 We observe evidence of transcriptional interference between the two MDM2 promoters, which produce a poorly translated distal promoter-derived uORF-containing mRNA isoform and a well-translated proximal promoter-derived transcript. Down-regulation of distal promoter activity markedly up-regulates proximal promoter-driven expression and results in local reduction of histone H3K36 trimethylation. Moreover, we observe that this transcript toggling between the two MDM2 isoforms naturally occurs during human embryonic stem cell differentiation programs.


Subject(s)
Gene Expression Regulation , Models, Genetic , Proto-Oncogene Proteins c-mdm2/genetics , CRISPR-Cas Systems , Chromatin Immunoprecipitation , Gene Knockdown Techniques , Histones/metabolism , Humans , MCF-7 Cells , Promoter Regions, Genetic
11.
Nature ; 559(7712): 130-134, 2018 07.
Article in English | MEDLINE | ID: mdl-29950728

ABSTRACT

The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation1. Mutations in DDX3 are linked to tumorigenesis2-4 and intellectual disability5, and the enzyme is targeted by a range of viruses6. How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions.


Subject(s)
5' Untranslated Regions/genetics , Codon, Initiator/genetics , DEAD-box RNA Helicases/metabolism , Peptide Chain Initiation, Translational/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Cross-Linking Reagents/chemistry , Ribosome Subunits, Small, Eukaryotic/chemistry , Ribosome Subunits, Small, Eukaryotic/metabolism
12.
Proteomics ; 18(10): e1700274, 2018 05.
Article in English | MEDLINE | ID: mdl-28929627

ABSTRACT

Recent genomic analyses have revealed pervasive translation from formerly unrecognized short open reading frames (sORFs) during yeast meiosis. Despite their short length, which has caused these regions to be systematically overlooked by traditional gene annotation approaches, meiotic sORFs share many features with classical genes, implying the potential for similar types of cellular functions. We found that sORF expression accounts for approximately 10-20% of the cellular translation capacity in yeast during meiotic differentiation and occurs within well-defined time windows, suggesting the production of relatively abundant peptides with stage-specific meiotic roles from these regions. Here, we provide arguments supporting this hypothesis and discuss sORF similarities and differences, as a group, to traditional protein coding regions, as well as challenges in defining their specific functions.


Subject(s)
Meiosis , Molecular Sequence Annotation , Open Reading Frames , Peptide Fragments/metabolism , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Computational Biology , Genome, Fungal , Peptide Fragments/genetics
13.
Cell ; 167(7): 1681-1692, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27984720

ABSTRACT

The elucidation of the genetic code remains among the most influential discoveries in biology. While innumerable studies have validated the general universality of the code and its value in predicting and analyzing protein coding sequences, established and emerging work has also suggested that full genome decryption may benefit from a greater consideration of a codon's neighborhood within an mRNA than has been broadly applied. This Review examines the evidence for context cues in translation, with a focus on several recent studies that reveal broad roles for mRNA context in programming translation start sites, the rate of translation elongation, and stop codon identity.


Subject(s)
Codon , Eukaryota/physiology , Protein Biosynthesis , RNA, Messenger/chemistry , Ribosomes/physiology , Molecular Imaging , Prokaryotic Cells/physiology , RNA, Messenger/physiology , RNA, Transfer/physiology
14.
Nat Rev Mol Cell Biol ; 16(11): 651-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26465719

ABSTRACT

Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products.


Subject(s)
Protein Biosynthesis/genetics , RNA, Messenger/genetics , Ribosomes/genetics , Base Sequence , High-Throughput Nucleotide Sequencing , Humans , Proteins/metabolism , Sequence Analysis, RNA
15.
Cell Rep ; 8(5): 1365-79, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25159147

ABSTRACT

Ribosome profiling suggests that ribosomes occupy many regions of the transcriptome thought to be noncoding, including 5' UTRs and long noncoding RNAs (lncRNAs). Apparent ribosome footprints outside of protein-coding regions raise the possibility of artifacts unrelated to translation, particularly when they occupy multiple, overlapping open reading frames (ORFs). Here, we show hallmarks of translation in these footprints: copurification with the large ribosomal subunit, response to drugs targeting elongation, trinucleotide periodicity, and initiation at early AUGs. We develop a metric for distinguishing between 80S footprints and nonribosomal sources using footprint size distributions, which validates the vast majority of footprints outside of coding regions. We present evidence for polypeptide production beyond annotated genes, including the induction of immune responses following human cytomegalovirus (HCMV) infection. Translation is pervasive on cytosolic transcripts outside of conserved reading frames, and direct detection of this expanded universe of translated products enables efforts at understanding how cells manage and exploit its consequences.


Subject(s)
Ecthyma, Contagious/genetics , Protein Biosynthesis , Protein Footprinting/methods , Ribosomes/metabolism , 5' Untranslated Regions , Algorithms , Animals , Codon, Initiator , Conserved Sequence , Ecthyma, Contagious/metabolism , HEK293 Cells , Humans , Mice , Molecular Sequence Annotation , Protein Binding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome
16.
Genes Dev ; 27(19): 2147-63, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24115771

ABSTRACT

Production of haploid gametes from diploid progenitor cells is mediated by a specialized cell division, meiosis, where two divisions, meiosis I and II, follow a single S phase. Errors in progression from meiosis I to meiosis II lead to aneuploid and polyploid gametes, but the regulatory mechanisms controlling this transition are poorly understood. Here, we demonstrate that the conserved kinase Ime2 regulates the timing and order of the meiotic divisions by controlling translation. Ime2 coordinates translational activation of a cluster of genes at the meiosis I-meiosis II transition, including the critical determinant of the meiotic chromosome segregation pattern CLB3. We further show that Ime2 mediates translational control through the meiosis-specific RNA-binding protein Rim4. Rim4 inhibits translation of CLB3 during meiosis I by interacting with the 5' untranslated region (UTR) of CLB3. At the onset of meiosis II, Ime2 kinase activity rises and triggers a decrease in Rim4 protein levels, thereby alleviating translational repression. Our results elucidate a novel developmentally regulated translational control pathway that establishes the meiotic chromosome segregation pattern.


Subject(s)
Chromosome Segregation/genetics , Gene Expression Regulation, Fungal , Meiosis/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , 5' Untranslated Regions/genetics , Intracellular Signaling Peptides and Proteins , Multigene Family/genetics , Protein Binding , Protein Serine-Threonine Kinases , RNA, Messenger/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
17.
Curr Protoc Mol Biol ; Chapter 4: 4.18.1-4.18.19, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23821443

ABSTRACT

Recent studies highlight the importance of translational control in determining protein abundance, underscoring the value of measuring gene expression at the level of translation. A protocol for genome-wide, quantitative analysis of in vivo translation by deep sequencing is presented here. This ribosome-profiling approach maps the exact positions of ribosomes on transcripts by nuclease footprinting. The nuclease-protected mRNA fragments are converted into a DNA library suitable for deep sequencing using a strategy that minimizes bias. The abundance of different footprint fragments in deep sequencing data reports on the amount of translation of a gene. Additionally, footprints reveal the exact regions of the transcriptome that are translated. To better define translated reading frames, an adaptation that reveals the sites of translation initiation by pre-treating cells with harringtonine to immobilize initiating ribosomes is described. The protocol described requires 5 to 7 days to generate a completed ribosome profiling sequencing library. Sequencing and data analysis requires an additional 4 to 5 days.


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Protein Biosynthesis , Ribosomes/metabolism , Computational Biology/methods , Time Factors
18.
Cell ; 154(2): 442-51, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23849981

ABSTRACT

The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA. Coupling of dCas9 to a transcriptional repressor domain can robustly silence expression of multiple endogenous genes. RNA-seq analysis indicates that CRISPR interference (CRISPRi)-mediated transcriptional repression is highly specific. Our results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence, revealing the potential of CRISPRi as a general tool for the precise regulation of gene expression in eukaryotic cells.


Subject(s)
Bacterial Proteins/genetics , Gene Targeting/methods , Streptococcus pyogenes , HEK293 Cells , HeLa Cells , Humans , Saccharomyces cerevisiae/genetics , RNA, Small Untranslated
19.
Mol Biol Cell ; 24(9): 1274-89, 2013 May.
Article in English | MEDLINE | ID: mdl-23468524

ABSTRACT

Aneuploidy, a chromosome content that is not a multiple of the haploid karyotype, is associated with reduced fitness in all organisms analyzed to date. In budding yeast aneuploidy causes cell proliferation defects, with many different aneuploid strains exhibiting a delay in G1, a cell cycle stage governed by extracellular cues, growth rate, and cell cycle events. Here we characterize this G1 delay. We show that 10 of 14 aneuploid yeast strains exhibit a growth defect during G1. Furthermore, 10 of 14 aneuploid strains display a cell cycle entry delay that correlates with the size of the additional chromosome. This cell cycle entry delay is due to a delayed accumulation of G1 cyclins that can be suppressed by supplying cells with high levels of a G1 cyclin. Our results indicate that aneuploidy frequently interferes with the ability of cells to grow and, as with many other cellular stresses, entry into the cell cycle.


Subject(s)
Aneuploidy , G1 Phase Cell Cycle Checkpoints , Saccharomyces cerevisiae/cytology , Active Transport, Cell Nucleus , Amino Acids/biosynthesis , Chromosomes, Artificial, Yeast/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Gene Expression Regulation, Fungal , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Metabolome , Protein Biosynthesis , Repressor Proteins/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Transcription, Genetic
20.
Nat Protoc ; 7(8): 1534-50, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22836135

ABSTRACT

Recent studies highlight the importance of translational control in determining protein abundance, underscoring the value of measuring gene expression at the level of translation. We present a protocol for genome-wide, quantitative analysis of in vivo translation by deep sequencing. This ribosome profiling approach maps the exact positions of ribosomes on transcripts by nuclease footprinting. The nuclease-protected mRNA fragments are converted into a DNA library suitable for deep sequencing using a strategy that minimizes bias. The abundance of different footprint fragments in deep sequencing data reports on the amount of translation of a gene. In addition, footprints reveal the exact regions of the transcriptome that are translated. To better define translated reading frames, we describe an adaptation that reveals the sites of translation initiation by pretreating cells with harringtonine to immobilize initiating ribosomes. The protocol we describe requires 5-7 days to generate a completed ribosome profiling sequencing library. Sequencing and data analysis require a further 4-5 days.


Subject(s)
Protein Biosynthesis/genetics , RNA, Messenger/genetics , Ribosomes/genetics , Sequence Analysis, RNA/methods , Animals , Base Sequence , Gene Library , Harringtonines/pharmacology , Humans , Molecular Sequence Data , Peptide Chain Initiation, Translational , RNA, Messenger/metabolism , RNA, Ribosomal , Ribonucleases/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Saccharomyces cerevisiae/cytology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...