Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36765610

ABSTRACT

BACKGROUND: Cancer patients infected with COVID-19 were shown in a multitude of studies to have poor outcomes on the basis of older age and weak immune systems from cancer as well as chemotherapy. In this study, the CT examinations of 22 confirmed COVID-19 cancer patients were analyzed. METHODOLOGY: A retrospective analysis was conducted on 28 cancer patients, of which 22 patients were COVID positive. The CT scan changes before and after treatment and the extent of structural damage to the lungs after COVID-19 infection was analyzed. Structural damage to a lung was indicated by a change in density measured in Hounsfield units (HUs) and by lung volume reduction. A 3D radiometric analysis was also performed and lung and lesion histograms were compared. RESULTS: A total of 22 cancer patients were diagnosed with COVID-19 infection. A repeat CT scan were performed in 15 patients after they recovered from infection. Most of the study patients were diagnosed with leukemia. A secondary clinical analysis was performed to show the associations of COVID treatment on the study subjects, lab data, and outcome on mortality. It was found that post COVID there was a decrease of >50% in lung volume and a higher density in the form of HUs due to scar tissue formation post infection. CONCLUSION: It was concluded that COVID-19 infection may have further detrimental effects on the lungs of cancer patients, thereby, decreasing their lung volume and increasing their lung density due to scar formation.

2.
Front Oncol ; 11: 678617, 2021.
Article in English | MEDLINE | ID: mdl-34568010

ABSTRACT

PURPOSE: There is a major shortage of reliable early detection methods for pancreatic cancer in high-risk groups. The focus of this preliminary study was to use Time Intensity-Density Curve (TIDC) and Marley Equation analyses, in conjunction with 3D volumetric and perfusion imaging to demonstrate their potential as imaging biomarkers to assist in the early detection of Pancreatic Ductal Adenocarcinoma (PDAC). EXPERIMENTAL DESIGNS: A quantitative retrospective and prospective study was done by analyzing multi-phase Computed Tomography (CT) images of 28 patients undergoing treatment at different stages of pancreatic adenocarcinoma using advanced 3D imaging software to identify the perfusion and radio density of tumors. RESULTS: TIDC and the Marley Equation proved useful in quantifying tumor aggressiveness. Perfusion delays in the venous phase can be linked to Vascular Endothelial Growth Factor (VEGF)-related activity which represents the active part of the tumor. 3D volume analysis of the multiphase CT scan of the patient showed clear changes in arterial and venous perfusion indicating the aggressive state of the tumor. CONCLUSION: TIDC and 3D volumetric analysis can play a significant role in defining the response of the tumor to treatment and identifying early-stage aggressiveness.

SELECTION OF CITATIONS
SEARCH DETAIL
...