Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 293(3): 1007-1017, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29150447

ABSTRACT

Chloramphenicol (Cam) is a broad-spectrum antibiotic used to combat bacterial infections in humans and animals. Cam export from bacterial cells is one of the mechanisms by which pathogens resist Cam's antibacterial effects, and several different proteins are known to facilitate this process. However, to date no report exists on any specific transport protein that facilitates Cam uptake. The proton-coupled oligopeptide transporter (POT) YdgR from Escherichia coli is a prototypical member of the POT family, functioning in proton-coupled uptake of di- and tripeptides. By following bacterial growth and conducting LC-MS-based assays we show here that YdgR facilitates Cam uptake. Some YdgR variants displaying reduced peptide uptake also exhibited reduced Cam uptake, indicating that peptides and Cam bind YdgR at similar regions. Homology modeling of YdgR, Cam docking, and mutational studies suggested a binding mode that resembles that of Cam binding to the multidrug resistance transporter MdfA. To our knowledge, this is the first report of Cam uptake into bacterial cells mediated by a specific transporter protein. Our findings suggest a specific bacterial transporter for drug uptake that might be targeted to promote greater antibiotic influx to increase cytoplasmic antibiotic concentration for enhanced cytotoxicity.


Subject(s)
Chloramphenicol/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Membrane Transport Proteins/genetics , Mutagenesis, Site-Directed
2.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 531-538, 2017 May.
Article in English | MEDLINE | ID: mdl-28179136

ABSTRACT

The repressive Nucleosome Remodeling and histone Deacetylation (NuRD) complex remodels the chromatin structure by coupling ATP-dependent remodeling activity with histone deacetylase function and plays important roles in regulating gene transcription, DNA damage repair and chromatin assembly. The complex is composed of six subunits: Metastasis Associated proteins MTA1/2/3 initially recruit histone chaperones RBBP4/7 followed by the histone deacetylases HDAC1/2 forming a core complex. Further association of the CpG-binding protein MBD2/3, p66α/ß and the ATP-dependent helicase CDH3/4 constitutes the NuRD complex. Recent structural studies on truncated human proteins or orthologous have revealed that the stoichiometry of the MTA1-RBBP4 complex is 2:4. This study reports expression and purification of the intact human MTA2-RBBP7 complex using HEK293F cells as expression system. In analogy with findings on the Drosophila NuRD complex, we find that also the human MTA-RBBP can be isolated in vitro. Taken together with previous findings this suggests, that MTA-RBBP is a stable complex, with a central role in the initial assembly of the human NuRD complex. Refined 3D volumes of the complex generated from negative stain electron microscopy (EM) data reveals an elongated architecture that is capable of hinge like motion around the center of the particle.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Histone Deacetylases/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Repressor Proteins/chemistry , Retinoblastoma-Binding Protein 7/chemistry , Amino Acid Sequence/genetics , Gene Expression Regulation , HEK293 Cells , Histone Chaperones/chemistry , Histone Chaperones/isolation & purification , Histone Chaperones/metabolism , Histone Deacetylase 1/chemistry , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/chemistry , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/isolation & purification , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Repressor Proteins/genetics , Repressor Proteins/isolation & purification , Retinoblastoma-Binding Protein 7/genetics , Retinoblastoma-Binding Protein 7/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...