Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(13): 22321-22332, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36224932

ABSTRACT

Optical diffraction tomography (ODT) is a label-free technique for three dimensional imaging of micron-sized objects. Coherence and limited sampling of 3D Fourier space are often responsible for the appearance of artifacts. Here we present an ODT microscope that uses low temporal coherence light and spatial light modulators to retrieve reliable 3D maps of the refractive index. A common-path interferometer, based on a spatial light modulator, measures the complex fields transmitted by a sample. Measured fields, acquired while scanning the illumination direction using a digital micro-mirror device, are fed into a Rytov reconstruction algorithm to obtain refractive index maps whose accuracy is directly evaluated on microfabricated 3D test objects. Even for challenging shapes such as pyramids, bridges, and dumbbells, we obtain volumetric reconstructions that compare very well with electron microscopy images.

2.
Sci Rep ; 9(1): 11845, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413286

ABSTRACT

Ultrasound (US) induced transient membrane permeabilisation has emerged as a hugely promising tool for the delivery of exogenous vectors through the cytoplasmic membrane, paving the way to the design of novel anticancer strategies by targeting functional nanomaterials to specific biological sites. An essential step towards this end is the detailed recognition of suitably marked nanoparticles in sonoporated cells and the investigation of the potential related biological effects. By taking advantage of Synchrotron Radiation Fourier Transform Infrared micro-spectroscopy (SR-microFTIR) in providing highly sensitive analysis at the single cell level, we studied the internalisation of a nanoprobe within fibroblasts (NIH-3T3) promoted by low-intensity US. To this aim we employed 20 nm gold nanoparticles conjugated with the IR marker 4-aminothiophenol. The significant Surface Enhanced Infrared Absorption provided by the nanoprobes, with an absorbance increase up to two orders of magnitude, allowed us to efficiently recognise their inclusion within cells. Notably, the selective and stable SR-microFTIR detection from single cells that have internalised the nanoprobe exhibited clear changes in both shape and intensity of the spectral profile, highlighting the occurrence of biological effects. Flow cytometry, immunofluorescence and murine cytokinesis-block micronucleus assays confirmed the presence of slight but significant cytotoxic and genotoxic events associated with the US-nanoprobe combined treatments. Our results can provide novel hints towards US and nanomedicine combined strategies for cell spectral imaging as well as drug delivery-based therapies.


Subject(s)
Fibroblasts/metabolism , Gold/chemistry , Infrared Rays , Metal Nanoparticles/chemistry , Single-Cell Analysis , Synchrotrons , Ultrasonography , Animals , Cell Survival , Mice , Micronucleus, Germline/metabolism , NIH 3T3 Cells , Spectroscopy, Fourier Transform Infrared , Surface Properties
3.
J Colloid Interface Sci ; 540: 185-196, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30640066

ABSTRACT

HYPOTHESIS: One of the main assets of crosslinked polymer-shelled microbubbles (MBs) as ultrasound-active theranostic agents is the robustness of the shells, combined with the chemical versatility in modifying the surface with ligands and/or drugs. Despite the long shelf-life, subtle modifications occur in the MB shells involving shifts in acoustic, mechanical and structural properties. EXPERIMENTS: We carried out a long-term morphological and acoustic evolution analysis on elastomeric polyvinyl-alcohol (PVA)-shelled MBs, a novel platform accomplishing good acoustic and surface performances in one agent. Confocal laser scanning microscopy, acoustic spectroscopy and AFM nanomechanics were integrated to understand the mechanism of PVA MBs ageing. The changes in the MB acoustic properties were framed in terms of shell thickness and viscoelasticity using a linearised oscillation theory, and compared to MB morphology and to nanomechanical analysis. FINDINGS: We enlightened a novel, intriguing ageing time evolution of the PVA MBs with double behaviour with respect to a crossover time of ∼50 days. Before, significant changes occur in MB stiffness and shell thickness, mainly due to a massive release of entangled PVA chains. Then, the MB resonance frequency increases together with shell thickening and softening. Our benchmark study is of general interest for emerging viscoelastomeric bubbles towards personalised medicine.

4.
Sci Rep ; 7(1): 16536, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29184110

ABSTRACT

Among different therapeutic applications of Ultrasound (US), transient membrane sonoporation (SP) - a temporary, non-lethal porosity, mechanically induced in cell membranes through US exposure - represents a compelling opportunity towards an efficient and safe drug delivery. Nevertheless, progresses in this field have been limited by an insufficient understanding of the potential cytotoxic effects of US related to the failure of the cellular repair and to the possible activation of inflammatory pathway. In this framework we studied the in vitro effects of very low-intensity US on a human keratinocyte cell line, which represents an ideal model system of skin protective barrier cells which are the first to be involved during medical US treatments. Bioeffects linked to US application at 1 MHz varying the exposure parameters were investigated by fluorescence microscopy and fluorescence activated cell sorting. Our results indicate that keratinocytes undergoing low US doses can uptake drug model molecules with size and efficiency which depend on exposure parameters. According to sub-cavitation SP models, we have identified the range of doses triggering transient membrane SP, actually with negligible biological damage. By increasing US doses we observed a reduced cells viability and an inflammatory gene overexpression enlightening novel healthy relevant strategies.


Subject(s)
Cell Membrane Permeability/radiation effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Ultrasonic Waves , Animals , Apoptosis , Biomarkers , Cell Line , Cell Membrane/metabolism , Cell Survival , Flow Cytometry , Humans , Mice , Microscopy, Fluorescence , Sonication/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...