Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298633

ABSTRACT

The management of advanced-stage melanoma is clinically challenging, mainly because of its resistance to the currently available therapies. Therefore, it is important to develop alternative therapeutic strategies. The sigma-2 receptor (S2R) is overexpressed in proliferating tumor cells and represents a promising vulnerability to target. Indeed, we have recently identified a potent S2R modulator (BS148) that is effective in melanoma. To elucidate its mechanism of action, we designed and synthesized a BS148 fluorescent probe that enters SK-MEL-2 melanoma cells as assessed using confocal microscopy analysis. We show that S2R knockdown significantly reduces the anti-proliferative effect induced by BS148 administration, indicating the engagement of S2R in BS148-mediated cytotoxicity. Interestingly, BS148 treatment showed similar molecular effects to S2R RNA interference-mediated knockdown. We demonstrate that BS148 administration activates the endoplasmic reticulum stress response through the upregulation of protein kinase R-like ER kinase (PERK), activating transcription factor 4 (ATF4) genes, and C/EBP homologous protein (CHOP). Furthermore, we show that BS148 treatment downregulates genes related to the cholesterol pathway and activates the MAPK signaling pathway. Finally, we translate our results into patient-derived xenograft (PDX) cells, proving that BS148 treatment reduces melanoma cell viability and migration. These results demonstrate that BS148 is able to inhibit metastatic melanoma cell proliferation and migration through its interaction with the S2R and confirm its role as a promising target to treat cancer.


Subject(s)
Melanoma , Receptors, sigma , Humans , Apoptosis , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Signal Transduction , Receptors, sigma/genetics , Endoplasmic Reticulum Stress , Transcription Factor CHOP/metabolism , Activating Transcription Factor 4/metabolism , eIF-2 Kinase/metabolism
2.
Bioorg Chem ; 106: 104462, 2021 01.
Article in English | MEDLINE | ID: mdl-33213894

ABSTRACT

Histone Deacetylases (HDACs) are among the most attractive and interesting targets in anticancer drug discovery. The clinical relevance of HDAC inhibitors (HDACIs) is testified by four FDA-approved drugs for cancer treatment. However, one of the main drawbacks of these drugs resides in the lack of selectivity against the different HDAC isoforms, resulting in severe side effects. Thus, the identification of selective HDACIs represents an exciting challenge for medicinal chemists. HDACIs are composed of a cap group, a linker region, and a metal-binding group interacting with the catalytic zinc ion. While the cap group has been extensively investigated, less information is available about the effect of the linker on isoform selectivity. To this aim, in this work, we explored novel linker chemotypes to direct isoform selectivity. A small library of 25 hydroxamic acids with hitherto unexplored linker chemotypes was prepared. In vitro tests demonstrated that, depending on the linker type, some candidates selectively inhibit HDAC1 over HDAC6 isoform or vice versa. Docking calculations were performed to rationalize the effect of the novel linker chemotypes on biologic activity. Moreover, four compounds were able to increase the levels of acetylation of histone H3 or tubulin. These compounds were also assayed in breast cancer MCF7 cells to test their antiproliferative effect. Three compounds showed a significant reduction of cancer proliferation, representing valuable starting points for further optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Acetylation/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/metabolism , Histones/metabolism , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/metabolism , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship
3.
ACS Chem Neurosci ; 11(24): 4111-4127, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33263393

ABSTRACT

Opioids are the gold standard drugs for the treatment of acute and chronic severe pain, although their serious side effects constitute a big limitation. In the search for new and safer drugs, 5-HT1AR agonists are emerging as potential candidates in pain relief therapy. In this work, we evaluated the affinity and activity of enantiomers of the two newly synthesized, potent 5-HT1AR agonists N-[(2,2-diphenyl-1,3-dioxolan-4-yl)methyl]-2-[2-(pyridin-4-yl)phenoxy]ethan-1-ammonium hydrogenoxalate (rac-1) and N-((2,2-diphenyl-1,3-dioxolan-4-yl)methyl)-2-(2-(1-methyl-1H-imidazol-5-yl)phenoxy)ethan-1-ammonium hydrogenoxalate (rac-2) in vitro and in vivo. The role of chirality in the interaction with 5-HT1AR was evaluated by molecular docking. The activity of the rac-1 was tested in mouse models of acute pain (hot plate) and severe tonic nociceptive stimulation (intraplantar formalin test). Rac-1 was active in the formalin test with a reduction in paw licking in both phases at 10 mg/kg, and its effect was abolished by the selective 5-HT1AR antagonist, WAY-100635. The eutomer (S)-1, but not the racemate, was active during the hot plate test at 10 and 20 mg/kg, and this effect was abolished by 30 min treatment with WAY-100635 at 30 min. Similarly to 8-OH-DPAT, (S)-1 evoked a slow outward current and depressed spontaneous glutamatergic transmission in superficial dorsal horn neurons, more effectively than rac-1. The eutomer (S)-1 showed promising developability properties, such as high selectivity over 5-HT subtypes, no interaction with the µ receptors, and low hepato- and cardiotoxicity. Therefore, (S)-1 may represent a potential candidate for the treatment of acute and chronic pain without having the adverse effects that are commonly associated with the classic opioid drugs.


Subject(s)
Pharmaceutical Preparations , Receptor, Serotonin, 5-HT1A , Analgesics, Opioid/pharmacology , Animals , Mice , Molecular Docking Simulation , Pain
4.
ACS Med Chem Lett ; 11(5): 1028-1034, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32435421

ABSTRACT

Sigma receptors (SRs) are recognized as valuable targets for the treatment of neurodegenerative disorders. A series of novel SRs ligands were designed by combining key pharmacophoric amines (i.e., benzylpiperidine or benzylpiperazine) with new 1,3-dithiolane-based heterocycles and their bioisosters. The new compounds exhibited a low nanomolar affinity for sigma-1 and sigma-2 receptors. Five selected compounds were evaluated for their neuroprotective capacity on SH-SY5Y neuroblastoma cell line. They were able to counteract the neurotoxicity induced by rotenone, oligomycin and NMDA. Competition studies with PB212, a S1R antagonist, confirmed the involvement of S1R in neuroprotection from the oxidative stress induced by rotenone. Electrophysiological experiments performed on cortical neurons in culture highlighted the compounds ability to reduce NMDA-evoked currents, suggesting a negative allosteric modulator activity toward the NMDA receptor. Altogether these results qualify our novel dithiolane derivatives as potential agents for fighting neurodegeneration.

5.
Pharmacol Rep ; 72(2): 427-434, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32002826

ABSTRACT

BACKGROUND: In our previous work, spiroxatrine was taken as reference compound to develop selective NOP ligands. Therefore, several triazaspirodecanone derivatives were synthesized. Here, we verify their selectivity towards other 5-HT1 receptor subtypes and with respect to α2-AR (Adrenergic Receptors). METHODS: Binding affinities were determined on cells expressing human cloned receptors for 5-HT1A/B/D and α2A/B/C subtypes. The Ki values were determined for those with at least 50% radioligand inhibition. RESULTS: All our derivatives show a moderate affinity for α2 subtypes, spanning from 5 to 7.5 pKi values. Moreover, they show affinity values in a µM-nM range at the 5-HT1A receptor, while they are practically inactive at 5-HT1B and 5-HT1D subtypes. Compound 11, the best of the series, has a 5-HT1A pKi value of 8.43 similar to spiroxatrine but, notably, it has a 5-HT1A favorable selectivity ratio of 52, 8 and 29, respectively over α2A, α2B and α2C adrenoceptor subtypes. CONCLUSIONS: In this SAR study, a 5-HT1A selective ligand has been identified in which a tetralone moiety replaced the 1,4-benzodioxane of spiroxatrine and the methylene linker to the triazaspirodecanone portion was maintained in position 2.


Subject(s)
Dioxanes/pharmacology , Drug Discovery , Receptor, Serotonin, 5-HT1A/metabolism , Spiro Compounds/pharmacology , Animals , Binding, Competitive , CHO Cells , Cricetulus , Dioxanes/chemistry , Dioxanes/metabolism , Humans , Ligands , Molecular Structure , Protein Binding , Radioligand Assay , Receptor, Serotonin, 5-HT1A/genetics , Receptors, Adrenergic, alpha-2/genetics , Receptors, Adrenergic, alpha-2/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Structure-Activity Relationship
6.
Eur J Med Chem ; 176: 310-325, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31112892

ABSTRACT

A series of compounds generated by ring expansion/opening and molecular elongation/simplification of the 1,3-dioxolane scaffold were prepared and tested for binding affinity at 5-HT1AR and α1 adrenoceptors. The compounds with greater affinity were selected for further functional studies. N-((2,2-diphenyl-1,3-dioxan-5-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-ammonium hydrogen oxalate (12) emerged as highly potent full agonist at the 5-HT1AR (pKi 5-HT1A = 8.8; pD2 = 9.22, %Emax = 92). The pharmacokinetic data in rats showed that the orally administered 12 has a high biodistribution in the brain compartment. Thus, 12 was further investigated in-vivo, showing an anxiolytic and antidepressant effect. Moreover, in the formalin test, 12 was able to decrease the late response to the noxious stimulus, indicating a potential use in the treatment of chronic pain.


Subject(s)
Analgesics/therapeutic use , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/therapeutic use , Dioxanes/therapeutic use , Neuroprotective Agents/therapeutic use , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Analgesics/chemical synthesis , Analgesics/pharmacokinetics , Analgesics/toxicity , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/pharmacokinetics , Anti-Anxiety Agents/toxicity , Antidepressive Agents/chemical synthesis , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/toxicity , Brain/metabolism , Dioxanes/chemical synthesis , Dioxanes/pharmacokinetics , Dioxanes/toxicity , Male , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/toxicity , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Serotonin 5-HT1 Receptor Agonists/chemical synthesis , Serotonin 5-HT1 Receptor Agonists/pharmacokinetics , Serotonin 5-HT1 Receptor Agonists/toxicity , Stereoisomerism , Structure-Activity Relationship
7.
Future Med Chem ; 10(18): 2137-2154, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30043643

ABSTRACT

AIM: Targeting 5-HT1A receptor (5-HT1AR) as a strategy for CNS disorders and pain control. METHODOLOGY: A series of 1,3-dioxolane-based 2-heteroaryl-phenoxyethylamines was synthesized by a convergent approach and evaluated at α1-adrenoceptors and 5-HT1AR by binding and functional experiments. Absorption, distribution, metabolism, excretion and toxicity prediction studies were performed to explore the drug-likeness of the compounds. RESULTS & CONCLUSION: The most promising compound, the pyridin-4-yl derivative, emerged as a potent and selective 5-HT1AR agonist (pKi = 9.2; pD2 = 8.83; 5-HT1A/α1 = 135). In vitro it was able to permeate by passive diffusion MDCKII-MDR1 monolayer mimicking the blood-brain barrier and showed promising neuroprotective activity.


Subject(s)
Central Nervous System Diseases/drug therapy , Dioxolanes/chemistry , Dioxolanes/pharmacology , Neuralgia/drug therapy , Neuroprotective Agents/pharmacology , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin Receptor Agonists/chemical synthesis , Serotonin Receptor Agonists/pharmacology , Central Nervous System Diseases/metabolism , Dioxolanes/chemical synthesis , Dose-Response Relationship, Drug , Humans , Molecular Structure , Neuralgia/metabolism , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Serotonin Receptor Agonists/chemistry , Structure-Activity Relationship
8.
ChemMedChem ; 12(22): 1893-1905, 2017 11 22.
Article in English | MEDLINE | ID: mdl-28940806

ABSTRACT

A new series of spirocyclic σ receptor (σR) ligands were prepared and studied. Most were found to have a high affinity and selectivity for σ1 R; three compounds were shown to be σ1 R agonists, while another proved to be the only σ1 R antagonist. Only one of the σ1 R agonists (BS148) also exhibited σ2 R selectivity and was able to inhibit the growth of metastatic malignant melanoma cell lines without affecting normal human melanocytes. The antiproliferative activity of this compound suggested an σ2 R agonist profile. Further, preliminary investigations indicated that the mechanism of metastatic malignant melanoma cell death induced by BS148 is due, at least in part, to apoptosis.


Subject(s)
Analgesics, Opioid/pharmacology , Antineoplastic Agents/pharmacology , Melanoma/drug therapy , Piperidines/pharmacology , Receptors, sigma/agonists , Spiro Compounds/pharmacology , Analgesics, Opioid/chemical synthesis , Analgesics, Opioid/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , Male , Melanoma/pathology , Mice , Models, Molecular , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
9.
J Enzyme Inhib Med Chem ; 32(1): 214-230, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28114832

ABSTRACT

The 5-hydroxytryptamine (5-HT1A) receptors represent an attractive target in drug discovery. In particular, 5-HT1A agonists and partial agonists are deeply investigated for their potential role in the treatment of anxiety, depression, ischaemic brain disorder and more recently, of pain. On the other hand, 5-HT1A antagonists have been revealed promising compounds in cognition disorders and, lately, in cancer. Thus, the discovery of 5HT1A ligands is nowadays an appealing research activity in medicinal chemistry. In this work, Comparative Molecular Fields Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA) were applied on an in-house library of 5-HT1A ligands bearing different chemical scaffolds in order to elucidate their affinity and selectivity for the target. Following this procedure, a number of structural modifications have been drawn for the development of much more effective 5-HT1AR ligands. [Formula: see text].


Subject(s)
Receptor, Serotonin, 5-HT1A/metabolism , Serotonin 5-HT1 Receptor Antagonists/chemistry , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Dose-Response Relationship, Drug , Humans , Ligands , Models, Molecular , Molecular Structure , Quantitative Structure-Activity Relationship , Structure-Activity Relationship
10.
Eur J Med Chem ; 125: 435-452, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27689727

ABSTRACT

Recently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was reported as a potent 5-HT1AR agonist with a moderate 5-HT1AR selectivity. In an extension of this work a series of derivatives of 1, obtained by combining different heterocyclic rings with a more flexible amine chain, was synthesized and tested for binding affinity and activity at 5-HT1AR and α1 adrenoceptors. The results led to the identification of 14 and 15 as novel 5-HT1AR partial agonists, the first being outstanding for selectivity (5-HT1A/α1d = 80), the latter for potency (pD2 = 9.58) and efficacy (Emax = 74%). Theoretical studies of ADME properties shows a good profile for the entire series and MDCKII-MDR1 cells permeability data predict a good BBB permeability of compound 15, which possess a promising neuroprotective activity. Furthermore, in mouse formalin test, compound 15 shows a potent antinociceptive activity suggesting a new strategy for pain control.


Subject(s)
Alkanes/chemistry , Alkanes/therapeutic use , Analgesics/chemistry , Analgesics/therapeutic use , Pain/drug therapy , Serotonin 5-HT1 Receptor Agonists/chemistry , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Alkanes/pharmacokinetics , Alkanes/pharmacology , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Blood-Brain Barrier/metabolism , Formaldehyde , Humans , Male , Mice , Models, Molecular , Pain/chemically induced , Pain Measurement , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacokinetics , Serotonin 5-HT1 Receptor Agonists/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship
11.
Arch Pharm Res ; 40(5): 537-549, 2017 May.
Article in English | MEDLINE | ID: mdl-27615010

ABSTRACT

Nucleoside analogues play an important role in antiviral, antibacterial and antineoplastic chemotherapy. Herein we report the synthesis, structural characterization and biological activity of some 4'-C -methyl- and -phenyl dioxolane-based nucleosides. In particular, α and ß anomers of all natural nucleosides were obtained and characterized by NMR, HR-MS and X-ray crystallography. The compounds were tested for antimicrobial activity against some representative human pathogenic fungi, bacteria and viruses. Antitumor activity was evaluated in a large variety of human cancer cell-lines. Although most of the compounds showed non-significant activity, 23α weakly inhibited HIV-1 multiplication. Moreover, 22α and 32α demonstrated a residual antineoplastic activity, interestingly linked to the unnatural α configuration. These results may provide structural insights for the design of active antiviral and antitumor agents.


Subject(s)
Anti-HIV Agents/pharmacology , Antineoplastic Agents/pharmacology , Dioxolanes/pharmacology , HIV-1/drug effects , Purine Nucleosides/pharmacology , Pyrimidine Nucleosides/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Crystallography, X-Ray , Dioxolanes/chemical synthesis , Dioxolanes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Purine Nucleosides/chemical synthesis , Purine Nucleosides/chemistry , Pyrimidine Nucleosides/chemical synthesis , Pyrimidine Nucleosides/chemistry , Structure-Activity Relationship
12.
Eur J Med Chem ; 112: 1-19, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26874044

ABSTRACT

Herein we report the synthesis and biological activity of new sigma receptor (σR) ligands obtained by combining different substituted five-membered heterocyclic rings with appropriate σR pharmacophoric amines. Radioligand binding assay, performed on guinea pig brain membranes, identified 25b (1-(1,4-dioxaspiro[4.5]decan-2-ylmethyl)-4-benzylpiperazine) as the most interesting compound of the series, displaying high affinity and selectivity for σ1R (pKiσ1 = 9.13; σ1/σ2 = 47). The ability of 25b to modulate the analgesic effect of the κ agonist (-)-U-50,488H and µ agonist morphine was evaluated in vivo by radiant heat tail-flick test. It exhibited anti-opioid effects on both κ and µ receptor-mediated analgesia, suggesting an agonistic behavior at σ1R. Docking studies were performed on the theoretical σ1R homology model. The present work represents a new starting point for the design of more potent and selective σ1R ligands.


Subject(s)
Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Dioxolanes/chemistry , Dioxolanes/pharmacology , Pain/drug therapy , Receptors, sigma/metabolism , Analgesics, Opioid/therapeutic use , Animals , Brain/drug effects , Brain/metabolism , Dioxolanes/therapeutic use , Guinea Pigs , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Morphine/pharmacology , Morphine/therapeutic use , Pain/metabolism , Rats , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship
13.
Chem Biol Drug Des ; 86(4): 447-58, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25546401

ABSTRACT

Several spiroxatrine derivatives were synthesized and evaluated as potential NOP receptor ligands. Structural modifications of the 1,4-benzodioxane moiety of spiroxatrine have been the focus of this research project. The structure-activity relationships that emerged indicate that the presence of an H-bond donor group (hydroxyl group) is more favorable for NOP activity when it is positioned α with respect to the CH2 linked to the 1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one portion. Moreover, cis diastereoisomers of the hydroxyl derivatives4 and 22 show a moderately higher degree of stereoselectivity than trans isomers. In particular, the spiropiperidine derivative cis-4 has submicromolar agonistic activity, and it will be the reference compound for the design and synthesis of new NOP agonists.


Subject(s)
Aza Compounds , Receptors, Opioid/agonists , Spiro Compounds , Animals , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Humans , Ligands , Molecular Structure , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , Nociceptin Receptor
14.
Eur J Med Chem ; 87: 248-66, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25261823

ABSTRACT

Recently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was reported as a highly selective and potent 5-HT1AR ligand. In the present work we adopted an in-parallel synthetic strategy to rapidly explore a new set of arylpiperazine (7-32) that is structurally related to 1. The compounds were tested for binding affinity and functional activity at 5-HT1AR and α1-adrenoceptor subtypes and SAR studies were drawn. In particular, compounds 9, 27 and 30 emerged as promising α1 receptor antagonists, while compound 10 behaves as the most potent and efficacious 5-HT1AR agonist. All the compounds were docked into the 5HT1AR theoretical model and the results were in agreement with the biological experimental data. These findings may represent a new starting point for developing more selective α1 or 5-HT1AR ligands.


Subject(s)
Alkanes/chemistry , Alkanes/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Spiro Compounds/chemistry , Humans , Ligands , Molecular Docking Simulation , Protein Conformation , Receptor, Serotonin, 5-HT1A/chemistry , Receptors, Adrenergic, alpha-1/chemistry , Structure-Activity Relationship
15.
Chem Biol Drug Des ; 84(6): 712-20, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24894156

ABSTRACT

Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor that is expressed in brain and periphery and responds to a class of compounds called trace amines, such as ß-phenylethylamine (ß-PEA), tyramine, tryptamine, octopamine. The receptor is known to have a very rich pharmacology and could be also activated by different classes of compounds, including dopaminergic, adrenergic and serotonergic ligands. It is expected that targeting hTAAR1 could provide a novel pharmacological approach for several human disorders, such as schizophrenia, depression, attention deficit hyperactivity disorder, Parkinson's disease and metabolic diseases. Only recently, a small number of selective hTAAR1 agonists (among which RO5166017 and T1 AM) and antagonist (EPPTB), have been reported in literature. With the aim to identify new molecular entities able to act as ligands for this target, we used an homology model for the hTAAR1 and performed a virtual screening procedure on an in-house database of compounds. A number of interesting molecules were selected and by testing them in an in vitro assay we found several agonists and one antagonist, with activities in the low micromolar range. These compounds could represent the starting point for the development of more potent and selective TAAR1 ligands.


Subject(s)
Receptors, G-Protein-Coupled/agonists , Binding Sites , Databases, Chemical , Drug Evaluation, Preclinical , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Ligands , Molecular Docking Simulation , Oxazoles/chemistry , Oxazoles/metabolism , Phenethylamines/chemistry , Phenethylamines/metabolism , Protein Binding , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism
16.
Med Chem ; 10(5): 449-59, 2014.
Article in English | MEDLINE | ID: mdl-24286392

ABSTRACT

We have recently reported a novel class of selective 5-HT1A agonists among which GF449 emerged for its high potency and almost full agonist activity (pKi 5-HT1A = 8.8; pD2 = 9.22, %Emax = 91.6). In order to quantify GF449 in rat plasma and brain, a sensitive LC-MS/MS method was developed and validated. Solid phase extraction (SPE) or a combined protein precipitation SPE permitted an efficient analyte recovery and sample clean-up. Multiple reaction monitoring (MRM) was used to track both GF449 and its internal standard (IS), MM189. GF449 was determined and quantitated to nanomolar concentrations in both plasma and brain matrix (LOQs = 0.0025 nmol/mL). Specificity was ensured using three further MRM qualifier transitions for both analyte and IS. Linearity was found in the range of 0.0025 nmol/mL to 1.00 nmol/mL (R(2) = 0.9965) and from 0.0025 nmol/mL to 50 nmol/mL (R(2) = 0.9999) for plasma and brain respectively. Intraday trueness ranged from 94.0% to 117.5% for brain and from 93.7% to 108.1% for plasma, while precision values were within 3.0% - 6.7% and 2.5% - 9.2% for plasma and brain respectively. The interday trueness of plasma ranged from 89.6% to 107.7% and the precision values (CV%) ranged from 4.6% to 7.5%. Interday trueness and precision (CV%) of the brain ranged from 94.3% to 101.2% and from 1.6% to 11.5% respectively. The method was validated in accordance with the EMEA guidelines and was successfully applied to plasma and brain samples obtained from rats treated with a 10 mg/kg single oral dose of GF449, thus demonstrating its applicability to preclinical pharmacokinetic studies.


Subject(s)
Amines/analysis , Blood Chemical Analysis/methods , Brain , Chromatography, Liquid/methods , Ethylamines/analysis , Heterocyclic Compounds, 1-Ring/analysis , Serotonin 5-HT1 Receptor Agonists/analysis , Tandem Mass Spectrometry/methods , Amines/blood , Animals , Calibration , Ethylamines/blood , Heterocyclic Compounds, 1-Ring/blood , Limit of Detection , Linear Models , Rats , Serotonin 5-HT1 Receptor Agonists/blood
17.
Chem Biol Drug Des ; 81(4): 509-16, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22883051

ABSTRACT

Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that belongs to the family of TAAR receptors and responds to a class of compounds called trace amines, such as ß-phenylethylamine (ß-PEA) and 3-iodothyronamine (T(1)AM). The receptor is known to have a very rich pharmacology and could be also activated by other classes of compounds, including adrenergic and serotonergic ligands. It is expected that targeting TAAR1 could provide a novel pharmacological approach to correct monoaminergic dysfunctions found in several brain disorders, such as schizophrenia, depression, attention deficit hyperactivity disorder and Parkinson's disease. Only recently, the first selective TAAR1 agonist RO5166017 has been identified. To explore the molecular mechanisms of protein-agonist interaction and speed up the identification of new chemical entities acting on this biomolecular target, we derived a homology model for the hTAAR1. The putative protein-binding site has been explored by comparing the hTAAR1 model with the ß(2)-adrenoreceptor binding site, available by X-ray crystallization studies, and with the homology modelled 5HT(1A) receptor. The obtained results, in tandem with docking studies performed with RO5166017, ß-PEA and T(1)AM, provided an opportunity to reasonably identify the hTAAR1 key residues involved in ligand recognition and thus define important starting points to design new agonists.


Subject(s)
Oxazoles/chemistry , Phenethylamines/chemistry , Receptors, G-Protein-Coupled/agonists , Thyronines/chemistry , Amino Acid Sequence , Binding Sites , Humans , Molecular Docking Simulation , Molecular Sequence Data , Oxazoles/metabolism , Phenethylamines/metabolism , Protein Structure, Tertiary , Receptor, Serotonin, 5-HT1A/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, G-Protein-Coupled/metabolism , Sequence Alignment , Thyronines/metabolism
18.
Med Chem ; 8(5): 769-78, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22741790

ABSTRACT

A series of 1,3-oxathiolane-based nucleoside analogs 5-methyl substituted was synthesized and tested as potential antiviral agents. Structural characterization and C2-C4 / C2-C5 relative stereochemistry assignments were performed by NMR experiments. All tested isomers were found to be inactive and cytotoxic.


Subject(s)
Antiviral Agents/chemical synthesis , HIV-1/drug effects , Nucleosides/chemical synthesis , Thiophenes/chemical synthesis , Antiviral Agents/toxicity , Cell Line , Cell Survival/drug effects , HIV-1/growth & development , Humans , Magnetic Resonance Spectroscopy , Nucleosides/toxicity , Stereoisomerism , Structure-Activity Relationship , Thiophenes/toxicity
19.
ACS Med Chem Lett ; 3(1): 25-9, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-24900368

ABSTRACT

The potential therapeutic benefit of compounds able to activate AMPA receptors (AMPAr) has led to the search for new AMPAr positive modulators. On the basis of crystallographic data of the benzothiadiazines binding mode in the S1S2 GluA2 dimer interface, a set of 5-aryl-2,3-dihydrobenzothiadiazine type compounds has been synthesized and tested. Electrophysiological results suggested that 5-heteroaryl substituents on the benzothiadiazine core like 3-furanyl and 3-thiophenyl dramatically enhance the activity as positive modulators of AMPAr with respect to IDRA21 and cyclothiazide. Mouse brain microdialysis studies have suggested that 7-chloro-5-(3-furyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide crosses the blood-brain barrier after intraperitoneal injection. Biological results have been rationalized by a computational docking simulation that it has currently employed to design new AMPAr-positive modulator candidates.

20.
J Med Chem ; 55(1): 23-36, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22145629

ABSTRACT

A series of aralkylphenoxyethylamine and aralkylmethoxyphenylpiperazine compounds was synthesized and their in vitro pharmacological profile at both 5-HT(1A) receptors and α(1)-adrenoceptor subtypes was measured by binding assay and functional studies. The results showed that the replacement of the 1,3-dioxolane ring by a tetrahydrofuran, cyclopentanone, or cyclopentanol moiety leads to an overall reduction of in vitro affinity at the α(1)-adrenoceptor while both potency and efficacy were increased at the 5-HT(1A) receptor. A significant improvement of 5-HT(1A)/α(1) selectivity was observed in some of the cyclopentanol derivatives synthesized (4acis, 4ccis and trans). Compounds 2a and 4ccis emerged as novel and interesting 5-HT(1A) receptor antagonist (pK(i) = 8.70) and a 5-HT(1A) receptor partial agonist (pK(i) = 9.25, pD(2) = 9.03, E(max) = 47%, 5-HT(1A)/α(1a) = 69), respectively. Docking studies were performed at support of the biological data and to elucidate the molecular basis for 5-HT(1A) agonism/antagonism activity.


Subject(s)
Cyclopentanes/chemical synthesis , Furans/chemical synthesis , Piperazines/chemical synthesis , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Serotonin 5-HT1 Receptor Agonists/chemical synthesis , Serotonin 5-HT1 Receptor Antagonists/chemical synthesis , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Cyclopentanes/chemistry , Cyclopentanes/pharmacology , Drug Partial Agonism , Furans/chemistry , Furans/pharmacology , HeLa Cells , Humans , In Vitro Techniques , Ligands , Male , Models, Molecular , Piperazines/chemistry , Piperazines/pharmacology , Radioligand Assay , Rats , Serotonin 5-HT1 Receptor Agonists/chemistry , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT1 Receptor Antagonists/chemistry , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Spleen/drug effects , Spleen/physiology , Stereoisomerism , Structure-Activity Relationship , Vas Deferens/drug effects , Vas Deferens/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...