Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(37): 44844-44859, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34505760

ABSTRACT

New solid polymer electrolytes are of particular interest for next-generation high-energy batteries since they can overcome the limited voltage window of conventional polyether-based electrolytes. Herein, a flame-retardant phosphorus-containing polymer, poly(dimethyl(methacryloyloxy)methyl phosphonate) (PMAPC1) is introduced as a promising polymer matrix. Free-standing membranes are easily obtained by mixing PMAPC1 with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a small amount of acetonitrile (AN). LiTFSI/AN mixed aggregates are formed that act as plasticizers and enable ionic conductivities up to 1.6 × 10-3 S cm-1 at 100 °C. The high content of LiTFSI used in our electrolytes leads to the formation of a stable LiF solid-electrolyte interphase, which can effectively suppress Li dendrites and the chemical degradation of AN in contact with Li. Accordingly the electrolyte membranes exhibit a wide electrochemical stability window above 4.7 V versus Li+/Li and fire-retardant properties due to the presence of the phosphorus-containing polymer. Atomistic molecular modeling simulations have been performed to determine the structure of the electrolytes on the microscopic scale and to rationalize the trends in ionic conductivity and the transport regime as a function of the electrolyte composition. Finally, our electrolyte membranes enable stable cycling performance for LiFePO4|PMAPC1 + LiTFSI + AN|Li batteries.

2.
Soft Matter ; 15(31): 6418-6426, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31338513

ABSTRACT

The principle of encapsulation/release of a guest molecule from stimuli responsive hydrogels (SRHs) is mainly realised with pH, temperature or light stimuli. However, only a limited number of redox responsive hydrogels have been investigated so far. We report here the development of a SRH that can release its guest molecule upon a redox stimulus. To obtain this redox hydrogel, we have introduced into the hydrogel the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radical, which can be reversibly oxidized into an oxoammonium cation (TEMPO+). Water solubility is provided by the presence of the (oligoethyleneglycol)methacrylate (OEGMA) comonomer. Electrochemical and mechanical characterization showed that those gels exhibit interesting physicochemical properties, making them very promising candidates for practical use in a wide range of applications.

3.
ACS Appl Mater Interfaces ; 9(40): 34865-34874, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28910075

ABSTRACT

Water-soluble binders can enable greener and cost-effective Li-ion battery manufacturing by eliminating the standard fluorine-based formulations and associated organic solvents. The issue with water-based dispersions, however, remains the difficulty in stabilizing them, requiring additional processing complexity. Herein, we show that mechanochemical conversion of a regular poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) water-based dispersion produces a hydrogel that meets all the requirements as binder for lithium-ion battery electrode manufacture. We particularly highlight the suitable slurry rheology, improved adhesion, intrinsic electrical conductivity, large potential stability window and limited corrosion of metal current collectors and active electrode materials, compared to standard binder or regular PEDOT:PSS solution-based processing. When incorporating the active materials, conductive carbon and additives with PEDOT:PSS, the mechanochemical processing induces simultaneous binder gelation and fine mixing of the components. The formed slurries are stable, show no phase segregation when stored for months, and produce highly uniform thin (25 µm) to very thick (500 µm) films in a single coating step, with no material segregation even upon slow drying. In conjunction with PEDOT:PSS hydrogels, technologically relevant materials including silicon, tin, and graphite negative electrodes as well as LiCoO2, LiMn2O4, LiFePO4, and carbon-sulfur positive electrodes show superior cycling stability and power-rate performances compared to standard binder formulation, while significantly simplifying the aqueous-based electrode assembly.

4.
ACS Macro Lett ; 5(12): 1364-1368, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-35651219

ABSTRACT

One of the first examples of supramolecular gels presenting independent dual dynamics is built through a combination of hydrophobic and metal-ligand interactions. The associating building block consists in a water-soluble linear polymer terminated by a short hydrophobic sticker at one end, and a coordinating moiety at the other end. The distinct supramolecular nature of these noninterfering binding motifs allows the dynamics of the hydrogels to be finely tuned in an orthogonal fashion by the application of specific stimuli. Precisely, the solvent-induced plasticization of the hydrophobic associations and the acid-promoted dissociation of the metal-ligand complexes are used to control the network dynamics. By opposition to classically encountered binary gel-sol responses, we demonstrate that the stimuli-induced transition in material properties can be gradual, provided that the material structure is well designed and strong enough.

5.
Int J Mol Sci ; 16(1): 990-1007, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25569082

ABSTRACT

Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylamino)ethyl methacrylate) is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentrated aqueous solutions of this polymer turn into metallo-supramolecular hydrogels whose dynamic mechanical properties are investigated by rotational rheometry. Hence, the possibility for the material to relax mechanical constrains via dissociation of transient cross-links is brought into light. In addition, the complex phenomena occurring under large oscillatory shear are interpreted in the context of transient networks.


Subject(s)
Methacrylates/chemistry , Nylons/chemistry , Cobalt/chemistry , Hydrogels/chemistry , Magnetic Resonance Spectroscopy , Methacrylates/chemical synthesis , Nylons/chemical synthesis , Polymerization , Pyridines/chemistry
6.
Gels ; 1(2): 235-255, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-30674175

ABSTRACT

"Smart" materials have considerably evolved over the last few years for specific applications. They rely on intelligent macromolecules or (supra-)molecular motifs to adapt their structure and properties in response to external triggers. Here, a supramolecular stimuli-responsive polymer gel is constructed from heterotelechelic double hydrophilic block copolymers that incorporate thermo-responsive sequences. These macromolecular building units are synthesized via a three-step controlled radical copolymerization and then hierarchically assembled to yield coordination micellar hydrogels. The dynamic mechanical properties of this particular class of materials are studied in shear flow and finely tuned via temperature changes. Notably, rheological experiments show that structurally reinforcing the micellar network nodes leads to precise tuning of the viscoelastic response and yield behavior of the material. Hence, they constitute promising candidates for specific applications, such as mechano-sensors.

7.
Macromol Rapid Commun ; 36(7): 610-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25491079

ABSTRACT

At the basis of smart self-assembled materials are lying small building blocks that can hierarchically assemble in response to stimuli, e.g., temperature or chemical species. In this context, the synthesis of terpyridine end-capped poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N-isopropylacrylamide) diblock copolymers via controlled radical copolymerization is reported here. The self-assembly of those copolymers is investigated in dilute aqueous solutions while varying temperature or adding transition metal ions, respectively, leading to the formation of micellar nanostructures or metallosupramolecular triblock copolymers.


Subject(s)
Acrylic Resins/chemical synthesis , Methacrylates/chemical synthesis , Nylons/chemical synthesis , Pyridines/chemistry , Acrylic Resins/chemistry , Methacrylates/chemistry , Nylons/chemistry , Polymerization , Temperature
8.
Soft Matter ; 10(17): 3086-92, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24695908

ABSTRACT

Metallo-supramolecular micellar hydrogels exhibiting thermo-mechanical responsiveness are prepared through the hierarchical assembly of a heterotelechelic associating copolymer. The copolymer consists of a linear thermo-sensitive water-soluble sequence terminated by a short hydrophobic sticker at one end, the other being functionalized by a chelating ligand. As the first level of assembly, the associating copolymer is dissolved in aqueous solution to yield micellar nanostructures, bearing coordinative motifs at the end of the coronal chains. The second level of assembly is achieved when transition metal ions are added to the micellar solutions, resulting in almost instantaneous gelation. The thermo-mechanical response of those materials is investigated in detail by rotational rheometry, showing abrupt changes within the temperature boundaries corresponding to the phase transition of the polymer block located in the micellar corona.

9.
Chem Commun (Camb) ; 47(16): 4652-4, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21423975

ABSTRACT

Thiol- and yne-functionalized beads were manufactured in a simple microfluidic setup. While CuAAC and thiol-yne reactions were performed on yne-functionalized beads, 9 different thiol-X reactions were compared, in terms of kinetics and conversion, on thiol-functionalized beads.


Subject(s)
Alkynes/chemistry , Sulfhydryl Compounds/chemistry , Alkynes/chemical synthesis , Azides/chemistry , Catalysis , Copper/chemistry , Kinetics , Microfluidic Analytical Techniques , Molecular Structure , Organometallic Compounds/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...