Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Anal Chem ; 2018: 4739759, 2018.
Article in English | MEDLINE | ID: mdl-30254676

ABSTRACT

Croton megalocarpus seedcake oils from 30 different locations in south central Kenya were analyzed for their fatty acid composition using ATR-FTIR to determine the efficacy of a simple procedure for measuring initial geographic and subsequent temporal variation during five months of seed storage. To our knowledge, this is the first report showing variation in how oils in untreated nuts from different locations change during storage, and how these differences are correlated with local environments. These variations are important to forensic authentication efforts and they provide insights into ways to optimize Croton oil composition.

2.
Nanotechnol Sci Appl ; 4: 73-86, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-24198487

ABSTRACT

As nanomaterials are harnessed for medicine and other technological advances, an understanding of the toxicology of these new materials is required to inform our use. This toxicological knowledge will be required to establish the medical and environmental regulations required to protect consumers and those involved in nanomaterial manufacturing. Nanoparticles of titanium oxide, carbon nanotubes, semiconductor quantum dots, gold, and silver represent a high percentage of the nanotechnology currently available or currently poised to reach consumers. For these nanoparticles, this review aims to identify current applications, the current methods used for characterization and quantification, current environmental concentrations (if known), and an introduction to the toxicology research. Continued development of analytical tools for the characterization and quantification of nanomaterials in complex environmental and biological samples will be required for our understanding of the toxicology and environmental impact of nanomaterials. Nearly all materials exhibit toxicity at a high enough concentration. Robust, rapid, and cost effective analytical techniques will be required to determine current background levels of anthropogenic, accidental, and engineered nanoparticles in air, water, and soil. The impact of the growing number of engineered nanoparticles used in consumer goods and medical applications can then be estimated. This will allow toxicological profiles relevant to the demonstrated or predicted environmental concentrations to be determined.

3.
Curr Opin Chem Biol ; 8(5): 540-6, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15450498

ABSTRACT

Nanosized photonic explorers for bioanalysis with biologically localized embedding (PEBBLEs) have been created for the intracellular monitoring of small analytes (e.g. H(+), Ca(2+), Mg(2+), Zn(2+), O(2), K(+), Na(+), Cl(-), OH and glucose). The probes are based on the inclusion of fluorescent analyte-sensitive indicator dyes and analyte-insensitive reference dyes in a polymer (polyacrylamide, polydecylmethacrylate) or sol-gel (silica, ormosil) nanoparticle. The probes are ratiometric, reversible and protected from interaction with the cellular environment, a quality which is of benefit to the integrity of both the cell and the sensor functionalities. Herein we describe two types of PEBBLE sensors, direct measurement sensors and ion correlation sensors, as well as the use of these PEBBLEs in intracellular sensing.


Subject(s)
Biosensing Techniques , Intracellular Fluid/chemistry , Nanotechnology/methods , Acrylic Resins/chemistry , Fluorescent Dyes , Image Enhancement , Protons , Silicon Dioxide/chemistry
4.
Anal Chem ; 76(9): 2498-505, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15117189

ABSTRACT

Optical PEBBLE (probes encapsulated by biologically localized embedding) nanosensors have been developed for dissolved oxygen using organically modified silicate (ormosil) nanoparticles as a matrix. The ormosil nanoparticles are prepared via a sol-gel-based process, which includes the formation of core particles with phenyltrimethoxysilane as a precursor followed by the formation of a coating layer with methyltrimethoxysilane as a precursor. The average diameter of the resultant particles is 120 nm. These sensors incorporate the oxygen-sensitive platinum porphyrin dye as an indicator and an oxygen-insensitive dye as a reference for ratiometric intensity measurement. Two pairs of indicator dye and reference dye, respectively, platinum(II) octaethylporphine and 3,3'-dioctadecyloxacarbocyanine perchlorate, and platinum(II) octaethylporphine ketone and octaethylporphine, were used. The sensors have excellent sensitivity with an overall quenching response of 97%, as well as excellent linearity of the Stern-Volmer plot (r(2) = 0.999) over the whole range of dissolved oxygen concentrations (0-43 ppm). In vitro intracellular changes of dissolved oxygen due to cell respiration were monitored, with gene gun injected PEBBLEs, in rat C6 glioma cells. A significant change was observed with a fluorescence ratio increase of up to 500% after 1 h, for nine different sets of cells, which corresponds to a 90% reduction in terms of dissolved oxygen concentration. These results clearly show the validity of the delivery method for intracellular studies of PEBBLE sensors, as well as the high sensitivity, which is needed to achieve real-time measurements of intracellular dissolved oxygen concentration.


Subject(s)
Biosensing Techniques/methods , Macrophages/physiology , Nanotechnology/methods , Oxygen/analysis , Silicates/chemistry , Animals , Biolistics , Cell Line, Tumor , Fluorescent Dyes/chemistry , Glucose/analysis , Glucose/chemistry , Macrophages/cytology , Macrophages/metabolism , Mice , Microspheres , Oxygen/chemistry , Oxygen/metabolism , Particle Size , Rats , Sensitivity and Specificity , Spectrometry, Fluorescence
5.
Talanta ; 63(1): 41-59, 2004 May 10.
Article in English | MEDLINE | ID: mdl-18969403

ABSTRACT

This review discusses the development and recent advances of probes encapsulated by biologically localized embedding (PEBBLEs), and in particular the application of PEBBLEs as ion sensors. PEBBLEs allow for minimally intrusive sensing of ions in cellular environments due to their small size (20 to 600nm in diameter) and protect the sensing elements (i.e. fluorescent dyes) by encapsulating them within an inert matrix. The selectivity and sensitivity of these nanosensors are comparable to those of macroscopic ion selective optodes, and electrodes, while the response time and absolute detection limit are significantly better. This paper discusses the principles guiding PEBBLE design including synthesis, characterization, diversification, the advantages and limitations of the sensors, cellular applications and future directions of PEBBLE research.

6.
Analyst ; 128(10): 1262-7, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14667163

ABSTRACT

The first nanometer scale anion sensing fluorescent spherical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding) have been developed for the intracellular monitoring of chloride. The general scheme for the polymerization and introduction of sensing components creates a matrix that allows for the utilization of the highly selective ionophores used in poly(vinyl chloride) and poly(decyl methacrylate) ion-selective electrodes. We have demonstrated that our previously developed scheme for cation sensors can be utilized to tailoring selective submicron sensors for use in intracellular measurements of biologically relevant anions for which selective enough fluorescent probes do not exist. Three schemes were attempted for the development of chloride sensitive PEBBLEs. The first two used the Chloride ionophore indium(III) octaethylporphyrin chloride (In(OEP)Cl) (1) as an ionophore working in tandem with a chromoionophore and (2) as a chromoionophore with a peak shift generated by chloride mediated breaking of hydroxide ion-bridged porphyrin dimer. The third method used the optically silent Chloride ionophore III (ETH 9033) working in tandem with chromoionophore III (ETH 5350) to indirectly monitor Cl- activity by reporting the H+ coextracted into the matrix. Method 3 gave the most promising results, at a pH of 7.2 these PEBBLEs have a limit of detection of 0.2 mM Cl- with a linear dynamic range of 0.4 mM-190 mM Cl-. These PEBBLEs were delivered into C6 glioma cells, utilizing a gene gun, and intracellular chloride levels were monitored during ion-channel stimulation by kainic acid.


Subject(s)
Cell Line, Tumor/chemistry , Chlorine/analysis , Intracellular Fluid/chemistry , Animals , Cations/analysis , Ionophores , Microchemistry/methods , Nanotechnology , Rats
7.
Anal Chem ; 75(15): 3784-91, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-14572044

ABSTRACT

This paper presents the development and characterization of a highly selective magnesium fluorescent optical nanosensor, made possible by PEBBLE (probe encapsulated by biologically localized embedding) technology. A ratiometric sensor has been developed by co-immobilizing a dye that is sensitive to and highly selective for magnesium, with a reference dye in a matrix. The sensors are prepared via a microemulsion polymerization process, which entraps the sensing components inside a polymer matrix. The resultant spherical sensors are approximately 40 nm in diameter. The Coumarin 343 (C343) dye, which by itself does not enter the cell, when immobilized in a PEBBLE is used as the magnesium-selective agent that provides the high and necessary selectivity over other intracellular ions, such as Ca2+, Na+, and K+. The dynamic range of these sensors was 1-30 mM, with a linear range from 1 to 10 mM, with a response time of <4 s. In contrast to free dye, these nano-optodes are not perturbed by proteins. They are fully reversible and exhibit minimal leaching and photobleaching over extended periods of time. In vitro intracellular changes in Mg2+ concentration were monitored in C6 glioma cells, which remained viable after PEBBLE delivery via gene gun injection. The selectivity for Mg2+ along with the biocompatibility of the matrix provides a new and reliable tool for intracellular magnesium measurements.


Subject(s)
Magnesium/analysis , Microscopy, Confocal/methods , Nanotechnology/methods , Animals , Calcium/metabolism , Cations/analysis , Cell Line, Tumor , Cell Survival , Coumarins , Fluorescence , Glioma/chemistry , Glioma/metabolism , Glioma/pathology , Microscopy, Confocal/instrumentation , Optics and Photonics , Polymers , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL