Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Pract Oncol Radiother ; 27(2): 268-274, 2022.
Article in English | MEDLINE | ID: mdl-36299377

ABSTRACT

Background: The purpose of this work is to improve a sweeping beam technique for total body irradiation (TBI) on a low flat couch using a varying patient thickness model. We designed a flat couch for total body irradiation in supine and prone position. Three generic arcs with rectangular segments for a patient torso thickness of 16, 22 and 28 cm were generated with respect to varying patient thickness of four particular parts of the body: head, torso, thighs and calves. Materials and methods: Longitudinal and transversal dose profiles were measured using an ionization chamber and the EBT3 gafchromic film in a solid water slab phantom. The robustness of the method was examined in phantoms of different thicknesses. Results: Measured dose homogeneity stays within ±10% of prescribed dose for all of the three patient thickness models. The robustness of the method was evaluated as the increase in dose in the phantom center of 0.7% per 1 cm reduction in phantom thickness. Conclusion: The method is applicable for the broad range of patient sizes, comfortable for patients, robust and suitable for standard treatment rooms with a standard linear accelerator. It requires minimal investments into equipment.

2.
Rep Pract Oncol Radiother ; 24(2): 245-250, 2019.
Article in English | MEDLINE | ID: mdl-30858769

ABSTRACT

AIM: To evaluate calculation of treatment plans based on synthetic-CT (sCT) images generated from MRI. BACKGROUND: Because of better soft tissue contrast, MR images are used in addition to CT images for radiotherapy planning. However, registration of CT and MR images or repositioning between scanning sessions introduce systematic errors, hence suggestions for MRI-only therapy. The lack of information on electron density necessary for dose calculation leads to sCT (synthetic CT) generation. This work presents a comparison of dose distribution calculated on standard CT and sCT. MATERIALS AND METHODS: 10 prostate patients were included in this study. CT and MR images were collected for each patient and then water equivalent (WE) and MRCAT images were generated. The radiation plans were optimized on CT and then recalculated on MRCAT and WE data. 2D gamma analysis was also performed. RESULTS: The mean differences in the majority of investigated DVH points were in order of 1% up to 10%, including both MRCAT and WE dose distributions. Mean gamma pass for acceptance criteria 1%/1 mm were greater than 82.5%. Prescribed doses for target volumes and acceptable doses for organs at risk were met in almost all cases. CONCLUSIONS: The dose calculation accuracy on MRCAT was not significantly compromised in the majority of clinical relevant DVH points. The introduction of MRCAT into practise would eliminate systematic errors, increase patients' comfort and reduce treatment expenses. Institutions interested in MRCAT commissioning must, however, consider changes to established workflow.

SELECTION OF CITATIONS
SEARCH DETAIL
...