Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Nanotechnol ; 5(1): 4, 2014.
Article in English | MEDLINE | ID: mdl-26561512

ABSTRACT

AGuIX nanoparticles are formed of a polysiloxane network surrounded by gadolinium chelates. They present several characteristics. They are easy to produce, they present very small hydrodynamic diameters (<5 nm) and they are biodegradable through hydrolysis of siloxane bonds. Such degradation was evaluated in diluted conditions at physiological pH by dynamic light scattering and relaxometry. AGuIX nanoparticles are also known as positive contrast agents and efficient radiosensitizers. The aim of this paper is to compare their efficiency for magnetic resonance imaging and radiosensitization to those of the commercial gadolinium based molecular agent: DOTAREM®. An experiment with healthy animals was conducted and the MRI pictures we obtained show a better contrast with the AguIX compared to the DOTAREM® for the same amount of injected gadolinium in the animal. The better contrast obtained after injection of Aguix than DOTAREM® is due to a higher longitudinal relaxivity and a residential time in the blood circulation that is two times higher. A fast and large increase in the contrast is also observed by MRI after an intravenous injection of the AGuIX in 9 L gliosarcoma bearing rats, and a plateau is reached seven minutes after the injection. We established a radiotherapy protocol consisting of an irradiation by microbeam radiation therapy 20 minutes after the injection of a specific quantity of gadolinium. After microbeam radiation therapy, no notable difference in median survival time was observed in the presence or absence of gadolinium chelates (38 and 44 days respectively). In comparison, the median survival time is increased to 102.5 days with AGuIX particles showing their interest in this nanomedicine protocol. This remarkable radiosensitizing effect could be explained by the persistent tumor uptake of the particles, inducing a significant nanoscale dose deposition under irradiation.

2.
PLoS One ; 8(12): e81874, 2013.
Article in English | MEDLINE | ID: mdl-24391709

ABSTRACT

Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Genes, MHC Class II/radiation effects , Glioma/genetics , Glioma/radiotherapy , Adaptive Immunity/genetics , Adaptive Immunity/radiation effects , Animals , Brain/immunology , Brain/radiation effects , Brain Neoplasms/immunology , Cell Line, Tumor , Gene Expression/radiation effects , Gene Expression Profiling , Glioma/immunology , Immunity, Innate/genetics , Immunity, Innate/radiation effects , Male , Oligonucleotide Array Sequence Analysis , Radiotherapy/methods , Rats , Rats, Inbred F344 , Signal Transduction/immunology , Signal Transduction/radiation effects , Synchrotrons
3.
J Synchrotron Radiat ; 19(Pt 4): 478-82, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22713877

ABSTRACT

Microbeam radiation therapy (MRT), a preclinical form of radiosurgery, uses spatially fractionated micrometre-wide synchrotron-generated X-ray beams. As MRT alone is predominantly palliative for animal tumors, the effects of the combination of MRT and a newly synthesized chemotherapeutic agent JAI-51 on 9L gliosarcomas have been evaluated. Fourteen days (D14) after implantation (D0), intracerebral 9LGS-bearing rats received either MRT, JAI-51 or both treatments. JAI-51, alone or immediately after MRT, was administered three times per week. Animals were kept up to ∼20 weeks after irradiation or sacrificed at D16 or D28 after treatment for cell cycle analysis. MRT plus JAI-51 increased significantly the lifespan compared with MRT alone (p = 0.0367). JAI-51 treatment alone had no effect on rat survival. MRT alone or associated with JAI-51 induced a cell cycle blockade in G2/M (p < 0.01) while the combined treatment also reduced the proportion of G0/G1 cells. At D28 after irradiation, MRT and MRT/JAI-51 had a smaller cell blockade effect in the G2/M phase owing to a significant increase in tumor cell death rate (<2c) and a proportional increase of endoreplicative cells (>8c). The combination of MRT and JAI-51 increases the survival of 9LGS-bearing rats by inducing endoreduplication of DNA and tumor cell death; further, it slowed the onset of tumor growth resumption two weeks after treatment.


Subject(s)
Brain Neoplasms/surgery , Chalcones/therapeutic use , Gliosarcoma/surgery , Radiosurgery , Animals , Brain Neoplasms/drug therapy , Gliosarcoma/drug therapy , Male , Rats , Rats, Inbred F344 , Synchrotrons , Tubulin/drug effects
4.
Int J Radiat Oncol Biol Phys ; 64(5): 1519-27, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16580502

ABSTRACT

PURPOSE: The purpose of this study was to assess the early effects of microbeam irradiation on the vascular permeability and volume in the parietal cortex of normal nude mice using two-photon microscopy and immunohistochemistry. METHODS AND MATERIALS: The upper part of the left hemisphere of 55 mice was irradiated anteroposteriorly using 18 vertically oriented beams (width 25 microm, interdistance 211 microm; peak entrance doses: 312 or 1000 Gy). At different times after microbeam exposure, the microvasculature in the cortex was analyzed using intravital two-photon microscopy after intravascular injection of fluorescein isothiocyanate (FITC)-dextrans and sulforhodamine B (SRB). Changes of the vascular volume were observed at the FITC wavelength over a maximum depth of 650 mum from the dura. The vascular permeability was detected as extravasations of SRB. RESULTS: For all times (12 h to 1 month) after microbeam irradiation and for both doses, the FITC-dextran remained in the vessels. No significant change in vascular volume was observed between 12 h and 3 months after irradiation. Diffusion of SRB was observed in microbeam irradiated regions from 12 h until 12 days only after a 1000 Gy exposure. CONCLUSION: No radiation damage to the microvasculature was detected in normal brain tissue after a 312 Gy microbeam irradiation. This dose would be more appropriate than 1000 Gy for the treatment of brain tumors using crossfired microbeams.


Subject(s)
Blood-Brain Barrier/radiation effects , Brain/blood supply , Capillary Permeability/radiation effects , Radiation Injuries, Experimental/pathology , Animals , Behavior, Animal/radiation effects , Blood Volume , Blood-Brain Barrier/pathology , Brain/pathology , Brain/radiation effects , Capillary Permeability/physiology , Dose-Response Relationship, Radiation , Immunohistochemistry , Mice , Mice, Nude , Microcirculation/radiation effects , Microscopy, Confocal/methods , Models, Animal , Radiotherapy Dosage , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...