Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(47): e2306357120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38150462

ABSTRACT

Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.


Subject(s)
Ecosystem , Food Chain , Predatory Behavior , Animals , Atlantic Ocean , Biomass
2.
Sci Adv ; 9(40): eadi8200, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37792940

ABSTRACT

Large predators frequent the open ocean where subsurface light drives visually based trophic interactions. However, we lack knowledge on how predators achieve energy balance in the unproductive open ocean where prey biomass is minimal in well-lit surface waters but high in dim midwaters in the form of scattering layers. We use an interdisciplinary approach to assess how the bioenergetics of scattering layer forays by a model predator vary across biomes. We show that the mean metabolic cost rate of daytime deep foraging dives to scattering layers decreases as much as 26% from coastal to pelagic biomes. The more favorable energetics offshore are enabled by the addition of a shallow scattering layer that, if not present, would otherwise necessitate costlier dives to deeper layers. The unprecedented importance of this shallow scattering layer challenges assumptions that the globally ubiquitous primary deep scattering layer constitutes the only mesopelagic resource regularly targeted by apex predators.


Subject(s)
Ecosystem , Predatory Behavior , Animals , Nutritional Status , Biomass , Oceans and Seas , Food Chain
3.
Sci Adv ; 9(32): eadi2718, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37556548

ABSTRACT

The Northwest Atlantic Ocean and Gulf of Mexico are among the fastest warming ocean regions, a trend that is expected to continue through this century with far-reaching implications for marine ecosystems. We examine the distribution of 12 highly migratory top predator species using predictive models and project expected habitat changes using downscaled climate models. Our models predict widespread losses of suitable habitat for most species, concurrent with substantial northward displacement of core habitats >500 km. These changes include up to >70% loss of suitable habitat area for some commercially and ecologically important species. We also identify predicted hot spots of multi-species habitat loss focused offshore of the U.S. Southeast and Mid-Atlantic coasts. For several species, the predicted changes are already underway, which are likely to have substantial impacts on the efficacy of static regulatory frameworks used to manage highly migratory species. The ongoing and projected effects of climate change highlight the urgent need to adaptively and proactively manage dynamic marine ecosystems.


Subject(s)
Climate Change , Ecosystem , Atlantic Ocean
4.
Ecol Appl ; 33(6): e2893, 2023 09.
Article in English | MEDLINE | ID: mdl-37285072

ABSTRACT

Species distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark-recapture tags, fisheries observer records) and two fishery independent (satellite-linked electronic tags, pop-up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.


Subject(s)
Biodiversity , Sharks , Animals , Fishes , Fisheries , Forecasting , Ecosystem
5.
J Fish Biol ; 102(6): 1311-1326, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36911991

ABSTRACT

Ectothermy and endothermy in extant fishes are defined by distinct integrated suites of characters. Although only ⁓0.1% of fishes are known to have endothermic capacity, recent discoveries suggest that there may still be uncommon pelagic fish species with yet to be discovered endothermic traits. Among the most rarely encountered marine fishes, the louvar Luvarus imperialis is a remarkable example of adaptive evolution as the only extant pelagic species in the order Acanthuriformes (including surgeonfishes, tangs, unicornfishes and Moorish idol). Magnetic resonance imaging and gross necropsy did not yield evidence of cranial or visceral endothermy but revealed a central-posterior distribution of myotomal red muscle that is a mixture of the character states typifying ectotherms (lateral-posterior) and red muscle endotherms (central-anterior). Dissection of a specimen confirmed, and an osteological proxy supported, that L. imperialis has not evolved the vascular rete that is vital to retaining heat in the red muscle. The combination of presumably relying on caudal propulsion while exhibiting internal red muscle without associated retia is unique to L. imperialis among all extant fishes, raising the macroevolutionary question of whether this species - in geologic timescales - will remain an ectotherm or evolve red muscle endothermy.


Subject(s)
Muscles , Perciformes , Animals , Fishes/physiology , Skull
6.
Ecol Evol ; 13(1): e9746, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36644707

ABSTRACT

Designing appropriate management plans requires knowledge of both the dispersal ability and what has shaped the current distribution of the species under consideration. Here, we investigated the evolutionary history of the endangered gray reef shark (Carcharhinus amblyrhynchos) across its range by sequencing thousands of RADseq loci in 173 individuals in the Indo-Pacific (IP). We first bring evidence of the occurrence of a range expansion (RE) originating close to the Indo-Australian Archipelago (IAA) where two stepping-stone waves (east and westward) colonized almost the entire IP. Coalescent modeling additionally highlighted a homogenous connectivity (Nm ~ 10 per generation) throughout the range, and isolation by distance model suggested the absence of barriers to dispersal despite the affinity of C. amblyrhynchos to coral reefs. This coincides with long-distance swims previously recorded, suggesting that the strong genetic structure at the IP scale (F ST ~ 0.56 between its ends) is the consequence of its broad current distribution and organization in a large number of demes. Our results strongly suggest that management plans for the gray reef shark should be designed on a range-wide rather than a local scale due to its continuous genetic structure. We further contrasted these results with those obtained previously for the sympatric but strictly lagoon-associated Carcharhinus melanopterus, known for its restricted dispersal ability. Carcharhinus melanopterus exhibits a similar RE dynamic but is characterized by a stronger genetic structure and a nonhomogeneous connectivity largely dependent on local coral reefs availability. This sheds new light on shark evolution, emphasizing the roles of IAA as source of biodiversity and of life-history traits in shaping the extent of genetic structure and diversity.

7.
Nature ; 609(7927): 535-540, 2022 09.
Article in English | MEDLINE | ID: mdl-36071164

ABSTRACT

Ocean eddies are coherent, rotating features that can modulate pelagic ecosystems across many trophic levels. These mesoscale features, which are ubiquitous at mid-latitudes1, may increase productivity of nutrient-poor regions2,3, accumulate prey4 and modulate habitat conditions in the water column5. However, in nutrient-poor subtropical gyres-the largest marine biome-the role of eddies in modulating behaviour throughout the pelagic predator community remains unknown despite predictions for these gyres to expand6 and pelagic predators to become increasingly important for food security7. Using a large-scale fishery dataset in the North Pacific Subtropical Gyre, we show a pervasive pattern of increased pelagic predator catch inside anticyclonic eddies relative to cyclones and non-eddy areas. Our results indicate that increased mesopelagic prey abundance in anticyclone cores4,8 may be attracting diverse predators, forming ecological hotspots where these predators aggregate and exhibit increased abundance. In this energetically quiescent gyre, we expect that isolated mesoscale features (and the habitat conditions in them) exhibit primacy over peripheral submesoscale dynamics in structuring the foraging opportunities of pelagic predators. Our finding that eddies influence coupling of epi- to mesopelagic communities corroborates the growing evidence that deep scattering layer organisms are vital prey for a suite of commercially important predator species9 and, thus, provide valuable ecosystem services.


Subject(s)
Ecosystem , Predatory Behavior , Water Movements , Water , Animals , Cyclonic Storms , Datasets as Topic , Fisheries , Food Chain , Nutrients/analysis , Pacific Ocean , Tropical Climate
8.
Sci Adv ; 8(33): eabo1754, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35984887

ABSTRACT

Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.

9.
Proc Natl Acad Sci U S A ; 119(20): e2117440119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35533277

ABSTRACT

Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.


Subject(s)
Sharks , Animals , Endangered Species , Plankton , Ships
11.
Mov Ecol ; 10(1): 22, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35484613

ABSTRACT

BACKGROUND: Reef manta ray (Mobula alfredi) populations along the Northeastern African coastline are poorly studied. Identifying critical habitats for this species is essential for future research and conservation efforts. Dungonab Bay and Mukkawar Island National Park (DMNP), a component of a UNESCO World Heritage Site in Sudan, hosts the largest known M. alfredi aggregation in the Red Sea. METHODS: A total of 19 individuals were tagged using surgically implanted acoustic tags and tracked within DMNP on an array of 15 strategically placed acoustic receivers in addition to two offshore receivers. Two of these acoustically monitored M. alfredi were also equipped with satellite linked archival tags and one individual was fitted with a satellite transmitting tag. Together, these data are used to describe approximately two years of residency and seasonal shifts in habitat use. RESULTS: Tagged individuals were detected within the array on 96% of monitored days and recorded an average residence index of 0.39 across all receivers. Detections were recorded throughout the year, though some individuals were absent from the receiver array for weeks or months at a time, and generalized additive mixed models showed a clear seasonal pattern in presence with the highest probabilities of detection occurring in boreal fall. The models indicated that M. alfredi presence was highly correlated with increasing chlorophyll-a levels and weakly correlated with the full moon. Modeled biological factors, including sex and wingspan, had no influence on animal presence. Despite the high residency suggested by acoustic telemetry, satellite tag data and offshore acoustic detections in Sanganeb Atoll and Suedi Pass recorded individuals moving up to 125 km from the Bay. However, all these individuals were subsequently detected in the Bay, suggesting a strong degree of site fidelity at this location. CONCLUSIONS: The current study adds to growing evidence that M. alfredi are highly resident and site-attached to coastal bays and lagoons but display seasonal shifts in habitat use that are likely driven by resource availability. This information can be used to assist in managing and supporting sustainable ecotourism within the DMNP, part of a recently designated UNESCO World Heritage Site.

12.
Ecol Evol ; 12(1): e8492, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127024

ABSTRACT

The whale shark Rhincodon typus is found throughout the world's tropical and warm-temperate ocean basins. Despite their broad physical distribution, research on the species has been concentrated at a few aggregation sites. Comparing DNA sequences from sharks at different sites can provide a demographically neutral understanding of the whale shark's global ecology. Here, we created genetic profiles for 84 whale sharks from the Saudi Arabian Red Sea and 72 individuals from the coast of Tanzania using a combination of microsatellite and mitochondrial sequences. These two sites, separated by approximately 4500 km (shortest over-water distance), exhibit markedly different population demographics and behavioral ecologies. Eleven microsatellite DNA markers revealed that the two aggregation sites have similar levels of allelic richness and appear to be derived from the same source population. We sequenced the mitochondrial control region to produce multiple global haplotype networks (based on different alignment methodologies) that were broadly similar to each other in terms of population structure but suggested different demographic histories. Data from both microsatellite and mitochondrial markers demonstrated the stability of genetic diversity within the Saudi Arabian aggregation site throughout the sampling period. These results contrast previously measured declines in diversity at Ningaloo Reef, Western Australia. Mapping the geographic distribution of whale shark lineages provides insight into the species' connectivity and can be used to direct management efforts at both local and global scales. Similarly, understanding historical fluctuations in whale shark abundance provides a baseline by which to assess current trends. Continued development of new sequencing methods and the incorporation of genomic data could lead to considerable advances in the scientific understanding of whale shark population ecology and corresponding improvements to conservation policy.

13.
Ann Rev Mar Sci ; 14: 129-159, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34416123

ABSTRACT

Many large marine predators make excursions from surface waters to the deep ocean below 200 m. Moreover, the ability to access meso- and bathypelagic habitats has evolved independently across marine mammals, reptiles, birds, teleost fishes, and elasmobranchs. Theoretical and empirical evidence suggests a number of plausible functional hypotheses for deep-diving behavior. Developing ways to test among these hypotheses will, however, require new ways to quantify animal behavior and biophysical oceanographic processes at coherent spatiotemporal scales. Current knowledge gaps include quantifying ecological links between surface waters and mesopelagic habitats and the value of ecosystem services provided by biomass in the ocean twilight zone. Growing pressure for ocean twilight zone fisheries creates an urgent need to understand the importance of the deep pelagic ocean to large marine predators.


Subject(s)
Ecosystem , Fishes , Animals , Biomass
16.
Biol Conserv ; 263: 109175, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34035536

ABSTRACT

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.

17.
Ecol Evol ; 10(10): 4314-4330, 2020 May.
Article in English | MEDLINE | ID: mdl-32489599

ABSTRACT

Genetic structure within marine species may be driven by local adaptation to their environment, or alternatively by historical processes, such as geographic isolation. The gulfs and seas bordering the Arabian Peninsula offer an ideal setting to examine connectivity patterns in coral reef fishes with respect to environmental gradients and vicariance. The Red Sea is characterized by a unique marine fauna, historical periods of desiccation and isolation, as well as environmental gradients in salinity, temperature, and primary productivity that vary both by latitude and by season. The adjacent Arabian Sea is characterized by a sharper environmental gradient, ranging from extensive coral cover and warm temperatures in the southwest, to sparse coral cover, cooler temperatures, and seasonal upwelling in the northeast. Reef fish, however, are not confined to these seas, with some Red Sea fishes extending varying distances into the northern Arabian Sea, while their pelagic larvae are presumably capable of much greater dispersal. These species must therefore cope with a diversity of conditions that invoke the possibility of steep clines in natural selection. Here, we test for genetic structure in two widespread reef fish species (a butterflyfish and surgeonfish) and eight range-restricted butterflyfishes across the Red Sea and Arabian Sea using genome-wide single nucleotide polymorphisms. We performed multiple matrix regression with randomization analyses on genetic distances for all species, as well as reconstructed scenarios for population subdivision in the species with signatures of isolation. We found that (a) widespread species displayed more genetic subdivision than regional endemics and (b) this genetic structure was not correlated with contemporary environmental parameters but instead may reflect historical events. We propose that the endemic species may be adapted to a diversity of local conditions, but the widespread species are instead subject to ecological filtering where different combinations of genotypes persist under divergent ecological regimes.

18.
PLoS One ; 14(9): e0222285, 2019.
Article in English | MEDLINE | ID: mdl-31498848

ABSTRACT

Whale sharks (Rhincodon typus) are typically dispersed throughout their circumtropical range, but the species is also known to aggregate in specific coastal areas. Accurate site descriptions associated with these aggregations are essential for the conservation of R. typus, an Endangered species. Although aggregations have become valuable hubs for research, most site descriptions rely heavily on sightings data. In the present study, visual census, passive acoustic monitoring, and long range satellite telemetry were combined to track the movements of R. typus from Shib Habil, a reef-associated aggregation site in the Red Sea. An array of 63 receiver stations was used to record the presence of 84 acoustically tagged sharks (35 females, 37 males, 12 undetermined) from April 2010 to May 2016. Over the same period, identification photos were taken for 76 of these tagged individuals and 38 were fitted with satellite transmitters. In total of 37,461 acoustic detections, 210 visual encounters, and 33 satellite tracks were analyzed to describe the sharks' movement ecology. The results demonstrate that the aggregation is seasonal, mostly concentrated on the exposed side of Shib Habil, and seems to attract sharks of both sexes in roughly equal numbers. The combined methodologies also tracked 15 interannual homing-migrations, demonstrating that many sharks leave the area before returning in later years. When compared to acoustic studies from other aggregations, these results demonstrate that R. typus exhibits diverse, site-specific ecologies across its range. Sightings-independent data from acoustic telemetry and other sources are an effective means of validating more common visual surveys.


Subject(s)
Animal Distribution/physiology , Sharks/physiology , Animal Migration/physiology , Animals , Ecology , Ecosystem , Female , Indian Ocean , Male , Seasons
19.
Proc Natl Acad Sci U S A ; 116(35): 17187-17192, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31387979

ABSTRACT

Mesoscale eddies are critical components of the ocean's "internal weather" system. Mixing and stirring by eddies exerts significant control on biogeochemical fluxes in the open ocean, and eddies may trap distinctive plankton communities that remain coherent for months and can be transported hundreds to thousands of kilometers. Debate regarding how and why predators use fronts and eddies, for example as a migratory cue, enhanced forage opportunities, or preferred thermal habitat, has been ongoing since the 1950s. The influence of eddies on the behavior of large pelagic fishes, however, remains largely unexplored. Here, we reconstruct movements of a pelagic predator, the blue shark (Prionace glauca), in the Gulf Stream region using electronic tags, earth-observing satellites, and data-assimilating ocean forecasting models. Based on >2,000 tracking days and nearly 500,000 high-resolution time series measurements collected by 15 instrumented individuals, we show that blue sharks seek out the interiors of anticyclonic eddies where they dive deep while foraging. Our observations counter the existing paradigm that anticyclonic eddies are unproductive ocean "deserts" and suggest anomalously warm temperatures in these features connect surface-oriented predators to the most abundant fish community on the planet in the mesopelagic. These results also shed light on the ecosystem services provided by mesopelagic prey. Careful consideration will be needed before biomass extraction from the ocean twilight zone to avoid interrupting a key link between planktonic production and top predators. Moreover, robust associations between targeted fish species and oceanographic features increase the prospects for effective dynamic ocean management.


Subject(s)
Predatory Behavior/physiology , Sharks/physiology , Animals , Atlantic Ocean
20.
Nature ; 572(7770): 461-466, 2019 08.
Article in English | MEDLINE | ID: mdl-31340216

ABSTRACT

Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.


Subject(s)
Animal Migration , Fisheries/statistics & numerical data , Geographic Mapping , Oceans and Seas , Sharks/physiology , Spatio-Temporal Analysis , Animals , Population Density , Risk Assessment , Sharks/classification , Ships , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...