Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Transl Res ; 262: 35-43, 2023 12.
Article in English | MEDLINE | ID: mdl-37507006

ABSTRACT

Kidney transplantation causes large perturbations of the immune system. While many studies focus on the allograft, insights into systemic effects are largely missing. Here, we analyzed the systemic immune response in 3 cohorts of kidney transplanted patients. Using serum proteomics, laboratory values, mass cytometry, histological and clinical parameters, inter-patient heterogeneity was leveraged for multi-omic co-variation analysis. We identified circulating immune modules (CIM) that describe extra-renal signatures of co-regulated plasma proteins. CIM are present in nontransplanted controls, in transplant conditions and during rejection. They are enriched in pathways linked to kidney function, extracellular matrix, signaling, and cellular activation. A complex leukocyte response in the blood during allograft quiescence and rejection is associated with CIM activity and CIM-specific cytokines. CIM activity correlates with kidney function including a 2-month prediction. Together, the data suggest a systemic and multi-layered response of transplant immunity that might be insightful for understanding allograft dysfunction and developing translational biomarkers.


Subject(s)
Kidney Transplantation , Humans , Kidney , Blood Proteins , Biomarkers , Allografts , Graft Rejection
2.
J Am Soc Nephrol ; 34(7): 1191-1206, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37022133

ABSTRACT

SIGNIFICANCE STATEMENT: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates and complex morphology, such as podocytes. To improve our understanding on how disturbances of these trafficking pathways are linked to podocyte depletion and slit diaphragm (SD) injury, the authors explored the role of the small GTPase Rab7, which is linked to endosomal, lysosomal, and autophagic pathways, using as model systems mice and Drosophila with podocyte-specific or nephrocyte-specific loss of Rab7, and a human podocyte cell line depleted for Rab7. Their findings point to maturation and fusion events during endolysosomal and autophagic maturation as key processes for podocyte homeostasis and function and identify altered lysosomal pH values as a putative novel mechanism for podocytopathies. BACKGROUND: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates, such as podocytes. How disturbances within these trafficking pathways may act as factors in proteinuric glomerular diseases is poorly understood. METHODS: To explore how disturbances in trafficking pathways may act as factors in proteinuric glomerular diseases, we focused on Rab7, a highly conserved GTPase that controls the homeostasis of late endolysosomal and autophagic processes. We generated mouse and Drosophila in vivo models lacking Rab7 exclusively in podocytes or nephrocytes, and performed histologic and ultrastructural analyses. To further investigate Rab7 function on lysosomal and autophagic structures, we used immortalized human cell lines depleted for Rab7. RESULTS: Depletion of Rab7 in mice, Drosophila , and immortalized human cell lines resulted in an accumulation of diverse vesicular structures resembling multivesicular bodies, autophagosomes, and autoendolysosomes. Mice lacking Rab7 developed a severe and lethal renal phenotype with early-onset proteinuria and global or focal segmental glomerulosclerosis, accompanied by an altered distribution of slit diaphragm proteins. Remarkably, structures resembling multivesicular bodies began forming within 2 weeks after birth, prior to the glomerular injuries. In Drosophila nephrocytes, Rab7 knockdown resulted in the accumulation of vesicles and reduced slit diaphragms. In vitro , Rab7 knockout led to similar enlarged vesicles and altered lysosomal pH values, accompanied by an accumulation of lysosomal marker proteins. CONCLUSIONS: Disruption within the final common pathway of endocytic and autophagic processes may be a novel and insufficiently understood mechanism regulating podocyte health and disease.


Subject(s)
Kidney Glomerulus , Podocytes , Animals , Mice , Humans , Kidney Glomerulus/pathology , Podocytes/metabolism , Endosomes , Drosophila , Kidney , Mammals
3.
Kidney Int ; 103(5): 872-885, 2023 05.
Article in English | MEDLINE | ID: mdl-36587794

ABSTRACT

Mutations in OSGEP and four other genes that encode subunits of the KEOPS complex cause Galloway-Mowat syndrome, a severe, inherited kidney-neurological disease. The complex catalyzes an essential posttranscriptional modification of tRNA and its loss of function induces endoplasmic reticulum (ER) stress. Here, using Drosophila melanogaster garland nephrocytes and cultured human podocytes, we aimed to elucidate the molecular pathogenic mechanisms of KEOPS-related glomerular disease and to test pharmacological inhibition of ER stress-related signaling as a therapeutic principle. We found that ATF4, an ER stress-mediating transcription factor, or its fly orthologue Crc, were upregulated in both fly nephrocytes and human podocytes. Knockdown of Tcs3, a fly orthologue of OSGEP, caused slit diaphragm defects, recapitulating the human kidney phenotype. OSGEP cDNA with mutations found in patients lacked the capacity for rescue. Genetic interaction studies in Tcs3-deficient nephrocytes revealed that Crc mediates not only cell injury, but surprisingly also slit diaphragm defects, and that genetic or pharmacological inhibition of Crc activation attenuates both phenotypes. These findings are conserved in human podocytes where ATF4 inhibition improved the viability of podocytes with OSGEP knockdown, with chemically induced ER stress, and where ATF4 target genes and pro-apoptotic gene clusters are upregulated upon OSGEP knockdown. Thus, our data identify ATF4-mediated signaling as a molecular link among ER stress, slit diaphragm defects, and podocyte injury, and our data suggest that modulation of ATF4 signaling may be a potential therapeutic target for certain podocyte diseases.


Subject(s)
Kidney Diseases , Podocytes , Animals , Humans , Podocytes/pathology , Transcription Factors/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Regulation , Kidney Diseases/genetics , Kidney Diseases/pathology , Endoplasmic Reticulum Stress/genetics , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism
4.
Life Sci Alliance ; 6(3)2023 03.
Article in English | MEDLINE | ID: mdl-36549870

ABSTRACT

Crumbs2 (CRB2) is a central component of the renal filtration barrier and part of the slit diaphragm, a unique cell contact formed by glomerular podocytes. Some CRB2 variants cause recessive inherited forms of steroid-resistant nephrotic syndrome. However, the disease-causing potential of numerous CRB2 variants remains unknown. Here, we report the establishment of a live-cell imaging-based assay, allowing a quantitative evaluation of the pathogenic potential of so far non-categorized CRB2 variants. Based on in silico data analysis and protein prediction software, putative disease-associated CRB2 missense variants were selected, expressed as CRB2-GFP fusion proteins, and analyzed in reporter cell lines with BFP-labeled plasma membrane. We found that in comparison with PM-localized WT, disease-associated CRB2 variants remained predominantly at the ER. Accumulation at the ER was also present for several non-characterized CRB2 variants and variants in which putative disulfide bridge-forming cysteines were replaced. Strikingly, WT CRB2 retained inside the ER in cells lacking protein disulfide isomerase A3, indicating that posttranslational modification, especially the formation of disulfide bridges, is a crucial step for the CRB2 PM transport.


Subject(s)
Membrane Proteins , Nephrotic Syndrome , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Carrier Proteins/metabolism , Nephrotic Syndrome/metabolism , Cell Membrane/metabolism , Mutation, Missense/genetics
5.
Genet Med ; 25(3): 100351, 2023 03.
Article in English | MEDLINE | ID: mdl-36571463

ABSTRACT

PURPOSE: Nephrolithiasis (NL) affects 1 in 11 individuals worldwide, leading to significant patient morbidity. NL is associated with nephrocalcinosis (NC), a risk factor for chronic kidney disease. Causative genetic variants are detected in 11% to 28% of NL and/or NC, suggesting that additional NL/NC-associated genetic loci await discovery. Therefore, we employed genomic approaches to discover novel genetic forms of NL/NC. METHODS: Exome sequencing and directed sequencing of the OXGR1 locus were performed in a worldwide NL/NC cohort. Putatively deleterious, rare OXGR1 variants were functionally characterized. RESULTS: Exome sequencing revealed a heterozygous OXGR1 missense variant (c.371T>G, p.L124R) cosegregating with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multigenerational family with 5 affected individuals. OXGR1 encodes 2-oxoglutarate (α-ketoglutarate [AKG]) receptor 1 in the distal nephron. In response to its ligand AKG, OXGR1 stimulates the chloride-bicarbonate exchanger, pendrin, which also regulates transepithelial calcium transport in cortical connecting tubules. Strong amino acid conservation in orthologs and paralogs, severe in silico prediction scores, and extreme rarity in exome population databases suggested that the variant was deleterious. Interrogation of the OXGR1 locus in 1107 additional NL/NC families identified 5 additional deleterious dominant variants in 5 families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in patients with NL/NC compared with Exome Aggregation Consortium controls (χ2 = 7.117, P = .0076). Wild-type OXGR1-expressing Xenopus oocytes exhibited AKG-responsive Ca2+ uptake. Of 5 NL/NC-associated missense variants, 5 revealed impaired AKG-dependent Ca2+ uptake, demonstrating loss of function. CONCLUSION: Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease.


Subject(s)
Nephrolithiasis , Receptors, Purinergic P2 , Humans , Calcium Oxalate , Nephrolithiasis/genetics , Mutation, Missense/genetics , Sulfate Transporters/genetics , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/metabolism
6.
Sci Rep ; 11(1): 18274, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521872

ABSTRACT

Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1cpk/cpk (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a deleterious splicing variant in CYS1. These findings suggest that mutations in Cys1/CYS1 cause an ARPKD phenotype in mouse and human, respectively, and that the renal cystic phenotype in the mouse is driven by overexpression of the Myc proto-oncogene.


Subject(s)
Membrane Proteins/genetics , Polycystic Kidney, Autosomal Recessive/genetics , Proto-Oncogene Proteins c-myc/metabolism , Animals , Child, Preschool , Down-Regulation , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Humans , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Transgenic , Polycystic Kidney, Autosomal Recessive/pathology
7.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33523862

ABSTRACT

Nephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive NOS1AP variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) NOS1AP, but not cDNA constructs bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation. Pharmacologic inhibition of CDC42 or its effectors, formin proteins, reduced NOS1AP-induced filopodia formation. NOS1AP knockdown reduced podocyte migration rate (PMR), which was rescued by overexpression of WT Nos1ap but not by constructs bearing patient variants. PMR in NOS1AP knockdown podocytes was also rescued by constitutively active CDC42Q61L or the formin DIAPH3 Modeling a NOS1AP patient variant in knock-in human kidney organoids revealed malformed glomeruli with increased apoptosis. Nos1apEx3-/Ex3- mice recapitulated the human phenotype, exhibiting proteinuria, foot process effacement, and glomerulosclerosis. These findings demonstrate that recessive NOS1AP variants impair CDC42/DIAPH-dependent actin remodeling, cause aberrant organoid glomerulogenesis, and lead to a glomerulopathy in humans and mice.


Subject(s)
Adaptor Proteins, Signal Transducing , Kidney Diseases , Nephrotic Syndrome , Podocytes , Actins/genetics , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Formins/genetics , Humans , Kidney Diseases/metabolism , Mice , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Podocytes/metabolism
8.
J Am Soc Nephrol ; 32(3): 580-596, 2021 03.
Article in English | MEDLINE | ID: mdl-33593823

ABSTRACT

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS: Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS: Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.


Subject(s)
DNA-Binding Proteins/genetics , Hernia, Hiatal/genetics , Microcephaly/genetics , Mutation, Missense , Nephrosis/genetics , Transcription Factors/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Child, Preschool , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/deficiency , Female , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Models, Molecular , Nephrotic Syndrome/genetics , Podocytes/metabolism , Polymorphism, Single Nucleotide , Pronephros/embryology , Pronephros/metabolism , Protein Stability , Transcription Factors/chemistry , Transcription Factors/deficiency , Xenopus laevis/embryology , Xenopus laevis/genetics , Zinc Fingers/genetics
9.
Am J Hum Genet ; 107(6): 1113-1128, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33232676

ABSTRACT

The discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections. Further, the variants impair DAAM2-dependent actin remodeling processes: wild-type DAAM2 cDNA, but not cDNA representing missense variants found in individuals with NS, rescued reduced podocyte migration rate (PMR) and restored reduced filopodia formation in shRNA-induced DAAM2-knockdown podocytes. Filopodia restoration was also induced by the formin-activating molecule IMM-01. DAAM2 also co-localizes and co-immunoprecipitates with INF2, which is intriguing since variants in both formins cause NS. Using in vitro bulk and TIRF microscopy assays, we find that DAAM2 variants alter actin assembly activities of the formin. In a Xenopus daam2-CRISPR knockout model, we demonstrate actin dysregulation in vivo and glomerular maldevelopment that is rescued by WT-DAAM2 mRNA. We conclude that DAAM2 variants are a likely cause of monogenic human SRNS due to actin dysregulation in podocytes. Further, we provide evidence that DAAM2-associated SRNS may be amenable to treatment using actin regulating compounds.


Subject(s)
Actins/metabolism , Genetic Variation , Microfilament Proteins/genetics , Nephrotic Syndrome/genetics , rho GTP-Binding Proteins/genetics , Alleles , Animals , Animals, Genetically Modified , Cell Movement/genetics , Cytoplasm/metabolism , Formins/metabolism , Humans , Kidney/metabolism , Kidney Glomerulus/metabolism , Mutation, Missense , Podocytes/metabolism , Pseudopodia/metabolism , RNA, Small Interfering/metabolism , Exome Sequencing , Xenopus
10.
Kidney Int ; 98(4): 958-969, 2020 10.
Article in English | MEDLINE | ID: mdl-32505465

ABSTRACT

Biallelic mutations in MAPKBP1 were recently associated with late-onset cilia-independent nephronophthisis. MAPKBP1 was found at mitotic spindle poles but could not be detected at primary cilia or centrosomes. Here, by identification and characterization of novel MAPKBP1 variants, we aimed at further investigating its role in health and disease. Genetic analysis was done by exome sequencing, homozygosity mapping, and a targeted kidney gene panel while coimmunoprecipitation was used to explore wild-type and mutant protein-protein interactions. Expression of MAPKBP1 in non-ciliated HeLa and ciliated inner medullary collecting duct cells enabled co-localization studies by fluorescence microscopy. By next generation sequencing, we identified two novel homozygous MAPKBP1 splice-site variants in patients with nephronophthisis-related chronic kidney disease. Splice-site analyses revealed truncation of C-terminal coiled-coil domains and patient-derived deletion constructs lost their ability to homodimerize and heterodimerize with paralogous WDR62. While wild-type MAPKBP1 exhibited centrosomal, basal body, and microtubule association, mutant proteins lost the latter and showed reduced recruitment to cell cycle dependent centriolar structures. Wild-type and mutant proteins had no reciprocal influence upon co-expression excluding dominant negative effects. Thus, MAPKBP1 appears to be a novel microtubule-binding protein with cell cycle dependent centriolar localization. Truncation of its coiled-coil domain is enough to abrogate its dimerization and results in severely disturbed intracellular localizations. Delineating the impact of impaired dimerization on cell cycle regulation and intracellular kidney signaling may provide new insights into common mechanisms of kidney degeneration. Thus, due to milder clinical presentation, MAPKBP1-associated nephronophthisis should be considered in adult patients with otherwise unexplained chronic kidney disease.


Subject(s)
Centrosome , Polycystic Kidney Diseases , Adult , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Cilia/metabolism , Dimerization , Fibrosis , Humans , Intracellular Signaling Peptides and Proteins , Nerve Tissue Proteins/metabolism , Polycystic Kidney Diseases/metabolism
11.
Nat Commun ; 10(1): 3967, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31481669

ABSTRACT

N6-threonyl-carbamoylation of adenosine 37 of ANN-type tRNAs (t6A) is a universal modification essential for translational accuracy and efficiency. The t6A pathway uses two sequentially acting enzymes, YRDC and OSGEP, the latter being a subunit of the multiprotein KEOPS complex. We recently identified mutations in genes encoding four out of the five KEOPS subunits in children with Galloway-Mowat syndrome (GAMOS), a clinically heterogeneous autosomal recessive disease characterized by early-onset steroid-resistant nephrotic syndrome and microcephaly. Here we show that mutations in YRDC cause an extremely severe form of GAMOS whereas mutations in GON7, encoding the fifth KEOPS subunit, lead to a milder form of the disease. The crystal structure of the GON7/LAGE3/OSGEP subcomplex shows that the intrinsically disordered GON7 protein becomes partially structured upon binding to LAGE3. The structure and cellular characterization of GON7 suggest its involvement in the cellular stability and quaternary arrangement of the KEOPS complex.


Subject(s)
Adenosine/analogs & derivatives , GTP-Binding Proteins/genetics , Hernia, Hiatal/genetics , Intrinsically Disordered Proteins/genetics , Microcephaly/genetics , Nephrosis/genetics , Nuclear Proteins/genetics , RNA, Transfer/genetics , RNA-Binding Proteins/genetics , Adenosine/genetics , Child , Female , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Humans , Intrinsically Disordered Proteins/metabolism , Male , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism
12.
Ecol Appl ; 29(4): e01901, 2019 06.
Article in English | MEDLINE | ID: mdl-30980439

ABSTRACT

Understanding the drivers of ecosystem change and their effects on ecosystem services are essential for management decisions and verification of progress towards national and international sustainability policies (e.g., Aichi Biodiversity Targets, Sustainable Development Goals). We aim to disentangle spatially the effect of climatological and non-climatological drivers on ecosystem service supply and trends. Therefore, we explored time series of three ecosystem services in Switzerland between 2004 and 2014: carbon dioxide regulation, soil erosion prevention, and air quality regulation. We applied additive models to describe the spatial variation attributed to climatological (i.e., temperature, precipitation and relative sunshine duration) and non-climatological drivers (i.e., random effects representing other spatially structured processes) that may affect ecosystem service change. Obtained results indicated strong influences of climatological drivers on ecosystem service trends in Switzerland. We identified equal contributions of all three climatological drivers on trends of carbon dioxide regulation and soil erosion prevention, while air quality regulation was more strongly influenced by temperature. Additionally, our results showed that climatological and non-climatological drivers affected ecosystem services both negatively and positively, depending on the regions (in particular lower and higher altitudinal areas), drivers, and services assessed. Our findings highlight stronger effects of climatological compared to non-climatological drivers on ecosystem service change in Switzerland. Furthermore, drivers of ecosystem change display a spatial heterogeneity in their influence on ecosystem service trends. We propose an approach building on an additive model to disentangle the effect of climatological and non-climatological drivers on ecosystem service trends. Such analyses should be extended in the future to ecosystem service flow and demand to complete ecosystem service assessments and to demonstrate and communicate more clearly the benefits of ecosystem services for human well-being.


Subject(s)
Ecosystem , Soil , Biodiversity , Carbon Dioxide , Conservation of Natural Resources , Humans , Switzerland
13.
Hum Genet ; 138(3): 211-219, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30778725

ABSTRACT

Nephrolithiasis (NL) affects 1 in 11 individuals worldwide and causes significant patient morbidity. We previously demonstrated a genetic cause of NL can be identified in 11-29% of pre-dominantly American and European stone formers. Pakistan, which resides within the Afro-Asian stone belt, has a high prevalence of nephrolithiasis (12%) as well as high rate of consanguinity (> 50%). We recruited 235 Pakistani subjects hospitalized for nephrolithiasis from five tertiary hospitals in the Punjab province of Pakistan. Subjects were surveyed for age of onset, NL recurrence, and family history. We conducted high-throughput exon sequencing of 30 NL disease genes and variant analysis to identify monogenic causative mutations in each subject. We detected likely causative mutations in 4 of 30 disease genes, yielding a likely molecular diagnosis in 7% (17 of 235) of NL families. Only 1 of 17 causative mutations was identified in an autosomal recessive disease gene. 10 of the 12 detected mutations were novel mutations (83%). SLC34A1 was most frequently mutated (12 of 17 solved families). We observed a higher frequency of causative mutations in subjects with a positive NL family history (13/109, 12%) versus those with a negative family history (4/120, 3%). Five missense SLC34A1 variants identified through genetic analysis demonstrated defective phosphate transport. We examined the monogenic causes of NL in a novel geographic cohort and most frequently identified dominant mutations in the sodium-phosphate transporter SLC34A1 with functional validation.


Subject(s)
Gene Expression Profiling , Genetic Association Studies , Genetic Predisposition to Disease , Nephrolithiasis/epidemiology , Nephrolithiasis/genetics , Adolescent , Adult , Aged , Alleles , Animals , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Family , Female , Gene Expression Profiling/methods , Genotype , Geography, Medical , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Mutation , Pakistan/epidemiology , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Xenopus laevis , Young Adult
14.
Kidney Int ; 95(4): 914-928, 2019 04.
Article in English | MEDLINE | ID: mdl-30773290

ABSTRACT

Approximately 500 monogenic causes of chronic kidney disease (CKD) have been identified, mainly in pediatric populations. The frequency of monogenic causes among adults with CKD has been less extensively studied. To determine the likelihood of detecting monogenic causes of CKD in adults presenting to nephrology services in Ireland, we conducted whole exome sequencing (WES) in a multi-centre cohort of 114 families including 138 affected individuals with CKD. Affected adults were recruited from 78 families with a positive family history, 16 families with extra-renal features, and 20 families with neither a family history nor extra-renal features. We detected a pathogenic mutation in a known CKD gene in 42 of 114 families (37%). A monogenic cause was identified in 36% of affected families with a positive family history of CKD, 69% of those with extra-renal features, and only 15% of those without a family history or extra-renal features. There was no difference in the rate of genetic diagnosis in individuals with childhood versus adult onset CKD. Among the 42 families in whom a monogenic cause was identified, WES confirmed the clinical diagnosis in 17 (40%), corrected the clinical diagnosis in 9 (22%), and established a diagnosis for the first time in 16 families referred with CKD of unknown etiology (38%). In this multi-centre study of adults with CKD, a molecular genetic diagnosis was established in over one-third of families. In the evolving era of precision medicine, WES may be an important tool to identify the cause of CKD in adults.


Subject(s)
Exome Sequencing , Genetic Predisposition to Disease , Genetic Testing/methods , Renal Insufficiency, Chronic/genetics , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Cohort Studies , Exome/genetics , Female , Humans , Ireland , Kidney , Male , Medical History Taking , Middle Aged , Mutation , Pedigree , Precision Medicine , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/therapy , Young Adult
15.
J Am Soc Nephrol ; 30(2): 201-215, 2019 02.
Article in English | MEDLINE | ID: mdl-30655312

ABSTRACT

BACKGROUND: Whole-exome sequencing (WES) finds a CKD-related mutation in approximately 20% of patients presenting with CKD before 25 years of age. Although provision of a molecular diagnosis could have important implications for clinical management, evidence is lacking on the diagnostic yield and clinical utility of WES for pediatric renal transplant recipients. METHODS: To determine the diagnostic yield of WES in pediatric kidney transplant recipients, we recruited 104 patients who had received a transplant at Boston Children's Hospital from 2007 through 2017, performed WES, and analyzed results for likely deleterious variants in approximately 400 genes known to cause CKD. RESULTS: By WES, we identified a genetic cause of CKD in 34 out of 104 (32.7%) transplant recipients. The likelihood of detecting a molecular genetic diagnosis was highest for patients with urinary stone disease (three out of three individuals), followed by renal cystic ciliopathies (seven out of nine individuals), steroid-resistant nephrotic syndrome (nine out of 21 individuals), congenital anomalies of the kidney and urinary tract (ten out of 55 individuals), and chronic glomerulonephritis (one out of seven individuals). WES also yielded a molecular diagnosis for four out of nine individuals with ESRD of unknown etiology. The WES-related molecular genetic diagnosis had implications for clinical care for five patients. CONCLUSIONS: Nearly one third of pediatric renal transplant recipients had a genetic cause of their kidney disease identified by WES. Knowledge of this genetic information can help guide management of both transplant patients and potential living related donors.


Subject(s)
Exome Sequencing/methods , Kidney Transplantation/methods , Precision Medicine/methods , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/surgery , Adolescent , Boston , Child , Child, Preschool , Cohort Studies , Female , Genetic Predisposition to Disease/epidemiology , Genetic Testing/methods , Graft Rejection , Graft Survival , Hospitals, Pediatric , Humans , Kidney Transplantation/adverse effects , Male , Prognosis , Renal Insufficiency, Chronic/physiopathology , Retrospective Studies , Risk Assessment , Severity of Illness Index , Survival Analysis , Transplant Recipients/statistics & numerical data , Treatment Outcome
16.
Am J Hum Genet ; 104(1): 45-54, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30609407

ABSTRACT

Nephronophthisis-related ciliopathies (NPHP-RCs) are a group of inherited diseases that are associated with defects in primary cilium structure and function. To identify genes mutated in NPHP-RC, we performed homozygosity mapping and whole-exome sequencing for >100 individuals, some of whom were single affected individuals born to consanguineous parents and some of whom were siblings of indexes who were also affected by NPHP-RC. We then performed high-throughput exon sequencing in a worldwide cohort of 800 additional families affected by NPHP-RC. We identified two ADAMTS9 mutations (c.4575_4576del [p.Gln1525Hisfs∗60] and c.194C>G [p.Thr65Arg]) that appear to cause NPHP-RC. Although ADAMTS9 is known to be a secreted extracellular metalloproteinase, we found that ADAMTS9 localized near the basal bodies of primary cilia in the cytoplasm. Heterologously expressed wild-type ADAMTS9, in contrast to mutant proteins detected in individuals with NPHP-RC, localized to the vicinity of the basal body. Loss of ADAMTS9 resulted in shortened cilia and defective sonic hedgehog signaling. Knockout of Adamts9 in IMCD3 cells, followed by spheroid induction, resulted in defective lumen formation, which was rescued by an overexpression of wild-type, but not of mutant, ADAMTS9. Knockdown of adamts9 in zebrafish recapitulated NPHP-RC phenotypes, including renal cysts and hydrocephalus. These findings suggest that the identified mutations in ADAMTS9 cause NPHP-RC and that ADAMTS9 is required for the formation and function of primary cilia.


Subject(s)
ADAMTS9 Protein/genetics , Ciliopathies/genetics , Mutation , Polycystic Kidney Diseases/genetics , ADAMTS9 Protein/metabolism , Animals , Cilia/pathology , Ciliopathies/pathology , Female , Humans , Male , Phenotype , Polycystic Kidney Diseases/pathology , Spheroids, Cellular , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
17.
Nephrol Dial Transplant ; 34(3): 485-493, 2019 03 01.
Article in English | MEDLINE | ID: mdl-29534211

ABSTRACT

BACKGROUND: Nephrotic syndrome (NS), a chronic kidney disease, is characterized by significant loss of protein in the urine causing hypoalbuminemia and edema. In general, ∼15% of childhood-onset cases do not respond to steroid therapy and are classified as steroid-resistant NS (SRNS). In ∼30% of cases with SRNS, a causative mutation can be detected in one of 44 monogenic SRNS genes. The gene LAMA5 encodes laminin-α5, an essential component of the glomerular basement membrane. Mice with a hypomorphic mutation in the orthologous gene Lama5 develop proteinuria and hematuria. METHODS: To identify additional monogenic causes of NS, we performed whole exome sequencing in 300 families with pediatric NS. In consanguineous families we applied homozygosity mapping to identify genomic candidate loci for the underlying recessive mutation. RESULTS: In three families, in whom mutations in known NS genes were excluded, but in whom a recessive, monogenic cause of NS was strongly suspected based on pedigree information, we identified homozygous variants of unknown significance (VUS) in the gene LAMA5. While all affected individuals had nonsyndromic NS with an early onset of disease, their clinical outcome and response to immunosuppressive therapy differed notably. CONCLUSION: We here identify recessive VUS in the gene LAMA5 in patients with partially treatment-responsive NS. More data will be needed to determine the impact of these VUS in disease management. However, familial occurrence of disease, data from genetic mapping and a mouse model that recapitulates the NS phenotypes suggest that these genetic variants may be inherited factors that contribute to the development of NS in pediatric patients.


Subject(s)
Exome Sequencing/methods , Immunosuppressive Agents/therapeutic use , Laminin/genetics , Mutation , Nephrotic Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Homozygote , Humans , Infant , Infant, Newborn , Male , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/pathology , Pedigree , Phenotype , Prognosis , Young Adult
18.
Nephrol Dial Transplant ; 34(3): 474-485, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30295827

ABSTRACT

BACKGROUND: Alport syndrome (AS) and atypical hemolytic-uremic syndrome (aHUS) are rare forms of chronic kidney disease (CKD) that can lead to a severe decline of renal function. Steroid-resistant nephrotic syndrome (SRNS) is more common than AS and aHUS and causes 10% of childhood-onset CKD. In recent years, multiple monogenic causes of AS, aHUS and SRNS have been identified, but their relative prevalence has yet to be studied together in a typical pediatric cohort of children with proteinuria and hematuria. We hypothesized that identification of causative mutations by whole exome sequencing (WES) in known monogenic nephritis and nephrosis genes would allow distinguishing nephritis from nephrosis in a typical pediatric group of patients with both proteinuria and hematuria at any level. METHODS: We therefore conducted an exon sequencing (WES) analysis for 11 AS, aHUS and thrombotic thrombocytopenic purpura-causing genes in an international cohort of 371 patients from 362 families presenting with both proteinuria and hematuria before age 25 years. In parallel, we conducted either WES or high-throughput exon sequencing for 23 SRNS-causing genes in all patients. RESULTS: We detected pathogenic mutations in 18 of the 34 genes analyzed, leading to a molecular diagnosis in 14.1% of families (51 of 362). Disease-causing mutations were detected in 3 AS-causing genes (4.7%), 3 aHUS-causing genes (1.4%) and 12 NS-causing genes (8.0%). We observed a much higher mutation detection rate for monogenic forms of CKD in consanguineous families (35.7% versus 10.1%). CONCLUSIONS: We present the first estimate of relative frequency of inherited AS, aHUS and NS in a typical pediatric cohort with proteinuria and hematuria. Important therapeutic and preventative measures may result from mutational analysis in individuals with proteinuria and hematuria.


Subject(s)
Exome Sequencing/methods , Genetic Markers , Mutation , Nephritis/diagnosis , Nephritis/genetics , Nephrosis/diagnosis , Nephrosis/genetics , Adolescent , Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/genetics , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Diagnosis, Differential , Female , Humans , Infant , Infant, Newborn , Male , Nephritis, Hereditary/diagnosis , Nephritis, Hereditary/genetics , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/genetics , Prognosis
20.
J Clin Invest ; 128(10): 4313-4328, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30179222

ABSTRACT

Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.


Subject(s)
Nephrotic Syndrome/metabolism , Nuclear Pore Complex Proteins/metabolism , Xenopus Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Line , Disease Models, Animal , Gene Knockdown Techniques , Humans , Nephrotic Syndrome/genetics , Nephrotic Syndrome/pathology , Nuclear Pore Complex Proteins/genetics , Xenopus Proteins/genetics , Xenopus laevis , Zebrafish , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...