Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38285624

ABSTRACT

Diets that provide a negative dietary anion cation difference (DCAD) and supplement with a vitamin D metabolite 25-OH-D3 (calcidiol) may increase calcium availability at parturition, and enhance piglet survival and performance. This factorial study assessed the effects of DCAD, calcidiol (50 µg/kg), and parity (parity 1 or >1) and their interactions. Large White and Landrace sows (n = 328), parity 1 to 8 were randomly allocated in blocks to treatment diets from day 103 of gestation until day 3 postfarrow: 1) negative DCAD without calcidiol (negative DCAD + no CA), n = 84, 2) negative DCAD with calcidiol (negative DCAD + CA) n = 84, 3) positive DCAD without calcidiol (negative DCAD + no CA), n = 81, and 4) positive DCAD with calcidiol (positive DCAD + CA), n = 79. Negative DCAD diets were acidified with an anionic feed (2 kg/t) and magnesium sulfate (2 kg/t). All treatment diets contained cholecalciferol at 1,000 IU/kg. Dry sow diets contained 14.8% crude protein (CP), 5.4% crude fiber (CF), 0.8% Ca, and 83 mEq/kg DCAD. Treatment diets 1 and 2 contained 17.5% CP, 7.3% CF, 0.8% Ca, and -2 mEq/kg DCAD. Treatment diets 3 and 4 contained 17.4% CP, 7.4% CF, 0.8% Ca, and 68 mEq/kg DCAD. Before farrowing, all negative DCAD sows had lower urine pH than all sows fed a positive DCAD (5.66 ± 0.05 and 6.29 ± 0.05, respectively; P < 0.01); urinary pH was acidified for both DCAD treatments indicating metabolic acidification. The percentage of sows with stillborn piglets was not affected by DCAD, calcidiol, or parity alone but sows fed the negative DCAD + CA diet had a 28% reduction in odds of stillbirth compared to the negative DCAD + no CA diet and even lesser odds to the positive DCAD + CA diet. At day 1 after farrowing, blood gas, and mineral and metabolite concentrations were consistent with feeding a negative DCAD diet and that negative DCAD diets influence energy metabolism, as indicated by increased glucose, cholesterol, and osteocalcin concentrations and reduced nonesterified free fatty acids and 3-hydroxybutyrate concentrations. In the subsequent litter, total piglets born and born alive (14.7 ± 0.3 and 13.8 ± 0.3 piglets, respectively; P = 0.029) was greater for positive DCAD diets compared to negative DCAD diets; and there was an interaction between DCAD, calcidiol, and parity (P = 0.002). Feeding a negative DCAD diet influenced stillbirth, subsequent litter size, and metabolic responses at farrowing. More studies are needed to define optimal diets prefarrowing for sows.


The transition period between late gestation and lactation is critical to farrowing and successful lactation; sows with higher blood calcium have less risk of dystocia. We evaluated transition diets that provided a negative dietary cation­anion difference (DCAD) and supplemented with calcidiol (CA), both of which influence calcium metabolism. Purebred Landrace or Large White sows (n = 328) were enrolled in the experiment and selected sows that were either primiparous (n = 99) or multiparous (n = 229; average parity = 2.59 ± 1.51; parity range = 1 to 8) were fed a dry sow ration until day 103 of gestation and were then fed transition diets until day 3 postfarrowing in a factorial study. The diets were formulated to include 1) negative DCAD + no CA, 2) negative DCAD + CA, 3) positive DCAD + no CA, or 4) positive DCAD + CA. All diets induced a metabolic acidosis as indicated by urinary pH. Sows fed the negative DCAD with added calcidiol had a >28% reduction in odds of stillbirth over negative DCAD + no CA and positive DCAD + CA diets. Following weaning and re-mating, there were 0.9 more piglets born in the subsequent litter for both positive DCAD diets compared to negative DCAD diets. Blood gas, and mineral and metabolite concentrations provided evidence that negative DCAD diets positively influenced energy metabolism.


Subject(s)
Calcifediol , Swine Diseases , Pregnancy , Female , Animals , Swine , Stillbirth/veterinary , Lactation , Diet/veterinary , Dietary Supplements , Anions/metabolism , Cations/metabolism , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...