Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3209, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587270

ABSTRACT

Mountain glaciers are known to be strongly affected by global climate change. Here we compute temporally consistent changes in glacier area, surface elevation and ice mass over the entire European Alps between 2000 and 2014. We apply remote sensing techniques on an extensive database of optical and radar imagery covering 93% of the total Alpine glacier volume. Our results reveal rapid glacier retreat across the Alps (-39 km² a-1) with regionally variable ice thickness changes (-0.5 to -0.9 m a-1). The strongest downwasting is observed in the Swiss Glarus and Lepontine Alps with specific mass change rates up to -1.03 m.w.e. a-1. For the entire Alps a mass loss of 1.3 ± 0.2 Gt a-1 (2000-2014) is estimated. Compared to previous studies, our estimated mass changes are similar for the central Alps, but less negative for the lower mountain ranges. These observations provide important information for future research on various socio-economic impacts like water resource management, risk assessments and tourism.

2.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29760120

ABSTRACT

The coasts of the West Antarctic Peninsula are strongly influenced by glacier meltwater discharge. The spatial structure and biogeochemical composition of inshore habitats are shaped by large quantities of terrigenous particulate material deposited in the vicinity of the coast, which impacts the pelagic and benthic ecosystems. We used a multitude of geochemical and environmental variables to identify the radius extension of the meltwater impact from the Fourcade Glacier into the fjord system of Potter Cove, King George Island. The k-means cluster algorithm, canonical correspondence analysis, variance analysis and Tukey's post hoc multiple comparison tests were applied to define and cluster coastal meltwater habitats. A minimum of 10 clusters were needed to classify the 8 km2 study area into meltwater fjord habitats (MFHs), fjord habitats and marine habitats. Strontium content in surface sediments is the main geochemical indicator for lithogenic creek discharge in Potter Cove. Furthermore, bathymetry, glacier distance and geomorphic positioning are the essential habitats explaining variables. The mean and maximum MFH extent amounted to 1 km and 2 km, respectively. Extrapolation of the identified meltwater impact ranges to King George Island coastlines, which are presently ice-covered bays and fjord areas, indicated an overall coverage of 200-400 km2 MFH, underpinning the importance of better understanding the biology and biogeochemistry in terrestrial marine transition zones.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

SELECTION OF CITATIONS
SEARCH DETAIL
...