Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Assist Technol ; 35(5): 378-388, 2023 09 03.
Article in English | MEDLINE | ID: mdl-35713603

ABSTRACT

In this paper, we present a bespoke brain-computer interface (BCI), which was developed for a person with severe motor-impairments, who was previously a Violinist, to allow performing and composing music at home. It uses steady-state visually evoked potential (SSVEP) and adopts a dry, low-density, and wireless electroencephalogram (EEG) headset. In this study, we investigated two parameters: (1) placement of the EEG headset and (2) inter-stimulus distance and found that the former significantly improved the information transfer rate (ITR). To analyze EEG, we adopted canonical correlation analysis (CCA) without weight-calibration. The BCI for musical performance realized a high ITR of 37.59 ± 9.86 bits min-1 and a mean accuracy of 88.89 ± 10.09%. The BCI for musical composition obtained an ITR of 14.91 ± 2.87 bits min-1 and a mean accuracy of 95.83 ± 6.97%. The BCI was successfully deployed to the person with severe motor-impairments. She regularly uses it for musical composition at home, demonstrating how BCIs can be translated from laboratories to real-world scenarios.


Subject(s)
Brain-Computer Interfaces , Music , Female , Humans , Evoked Potentials, Visual , Electroencephalography , Evoked Potentials , Photic Stimulation , Algorithms
2.
J Vis Exp ; (129)2017 11 02.
Article in English | MEDLINE | ID: mdl-29155754

ABSTRACT

Our research is aimed at gaining a better understanding of the electronic properties of organisms in order to engineer novel bioelectronic systems and computing architectures based on biology. This specific paper focuses on harnessing the unicellular slime mold Physarum polycephalum to develop bio-memristors (or biological memristors) and bio-computing devices. The memristor is a resistor that possesses memory. It is the 4th fundamental passive circuit element (the other three are the resistor, the capacitor, and the inductor), which is paving the way for the design of new kinds of computing systems; e.g., computers that might relinquish the distinction between storage and a central processing unit. When applied with an AC voltage, the current vs. voltage characteristic of a memristor is a pinched hysteresis loop. It has been shown that P. polycephalum produces pinched hysteresis loops under AC voltages and displays adaptive behavior that is comparable with the functioning of a memristor. This paper presents the method that we developed for implementing bio-memristors with P. polycephalum and introduces the development of a receptacle to culture the organism, which facilitates its deployment as an electronic circuit component. Our method has proven to decrease growth time, increase component lifespan, and standardize electrical observations.


Subject(s)
Myxomycetes/physiology , Biomimetics , Electric Impedance , Electrophysiological Phenomena , Myxomycetes/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...