Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 34(2): 400-413, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27502875

ABSTRACT

Injury to the orbitofrontal cortex (OFC) is a frequent consequence of head injury and may lead to dysfunctional regulation of emotional and social behavior. Dysfunctional emotional behavior may partly be related to the role of the OFC in emotion-attention interaction, as reported previously. In order to better understand its role in emotion-attention and emotion-cognitive control interactions, we investigated attention allocation to task-relevant and task-irrelevant threat-related emotional stimuli during a task requiring cognitive control in patients with lesion to the OFC. We measured the behavioral performance and event-related potentials (ERP) of 13 patients with OFC lesion and 11 control subjects during a Go/NoGo visual discrimination task. In the task, line drawings of threatening (spider) and neutral (flower) figures served as either task-relevant Go or NoGo signals, or as task-irrelevant distractors. Overall performance did not differ between the groups. In contrast to the control group performance, the orbitofrontal group performance was improved by relevant threat signal in comparison with neutral signal. Further, task-relevant threat signals evoked larger frontocentral N2-P3 amplitude in the orbitofrontal group. Taken together, behavioral and electrophysiological results suggest that patients with OFC injury allocated more attentional and cognitive control resources in the context of task-relevant emotional stimuli. This study provides new evidence for the role of the OFC in emotion-attention and emotion-cognitive control interactions. Further, the OFC seems to contribute to the balance between voluntary and involuntary attention networks in context of emotional stimuli. Better understanding of alterations in emotion-attention interaction offers insight into affective dysfunction due to OFC lesion.


Subject(s)
Attention/physiology , Emotions/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/injuries , Psychomotor Performance/physiology , Reaction Time/physiology , Adult , Evoked Potentials/physiology , Female , Humans , Male , Middle Aged , Photic Stimulation/methods
2.
J Neurotrauma ; 32(4): 272-9, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25274125

ABSTRACT

Mild traumatic brain injury (mTBI) may be associated with compromised executive functioning and altered emotional reactivity. Despite frequent affective and cognitive symptoms in mTBI, objective evidence for brain dysfunction is often lacking. Previously we have reported compromised performance in symptomatic mTBI patients in an executive reaction time (RT) test, a computer-based RT test engaging several executive functions simultaneously. Here, we investigated the cognitive control processes in mTBI in context of threat-related stimuli. We used behavioral measures and event-related potentials (ERP) to investigate attentional capture by task-relevant and task-irrelevant emotional stimuli during a Go-NoGo task requiring cognitive control. We also assessed subjective cognitive, somatic, and emotional symptoms with questionnaires. Twenty-seven subjects with previous mTBI and 17 controls with previous ankle injury participated in the study over 9 months post-injury. Electroencephalogram (EEG) was recorded while patients performed a modified executive RT-test. N2-P3 ERP component was used as a general measure of allocated attentional and executive processing resources. Although at the time of the testing, the mTBI and the control groups did not differ in symptom endorsement, mTBI patients reported having had more emotional symptoms overall since the injury than controls. The overall RT-test performance levels did not differ between groups. However, when threat-related emotional stimuli were used as Go-signals, the mTBI group was faster than the control group. In comparison to neutral stimuli, threat-related stimuli were associated with increased N2-P3 amplitude in all conditions. This threat-related enhancement of the N2-P3 complex was greater in mTBI patients than in controls in response to Go signals and NoGo signals, independent of relevance. We conclude that mTBI may be associated with enhanced attentional and executive resource allocation to threat-related stimuli. Along with behavioral evidence for enhanced attention allocation to threat stimuli, increased brain responses to threat were observed in mTBI. Enhanced attention capture by threat-related emotional stimuli may reflect inefficient top-down control of bottom-up influences of emotion, and might contribute to affective symptoms in mTBI.


Subject(s)
Attention/physiology , Brain Injuries/physiopathology , Emotions/physiology , Adult , Brain/physiopathology , Electroencephalography , Evoked Potentials/physiology , Executive Function/physiology , Female , Humans , Male , Reaction Time/physiology
3.
J Clin Exp Neuropsychol ; 36(5): 540-50, 2014.
Article in English | MEDLINE | ID: mdl-24839985

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of anterior thalamic nuclei (ANT) is a novel promising therapeutic method for treating refractory epilepsy. Despite reports of subjective memory impairments and mood disturbances in patients with ANT-DBS, little is known of its effects on cognitive and affective processes. HYPOTHESIS: The anterior thalamus has connections to prefrontal and limbic networks important for cognitive control and emotional reactivity. More specifically, anterior cingulate cortex (ACC), linked with ANT, has been assigned roles related to response inhibition and attention allocation to threat. Thus, we hypothesized ANT-DBS to influence executive functions, particularly response inhibition, and modulate emotional reactivity to threat. METHOD: Twelve patients having undergone ANT-DBS for intractable epilepsy participated in the study. Patients performed a computer-based executive reaction time (RT) test--that is, a go/no-go visual discrimination task with threat-related emotional distractors and rule switching, while the DBS was switched ON (5/5 mA constant current) and OFF every few minutes. RESULTS: ANT-DBS increased the amount of commission errors--that is, errors where subjects failed to withhold from responding. Furthermore, ANT-DBS slowed RTs in context of threat-related distractors. When stimulation was turned off, threat-related distractors had no distinct effect on RTs. CONCLUSION: We found immediate objective effects of ANT-DBS on human cognitive control and emotion-attention interaction. We suggest that ANT-DBS compromised response inhibition and enhanced attention allocation to threat due to altered functioning of neural networks that involve the DBS-target, ANT, and the regions connected to it such as ACC. The results highlight the need to consider affective and cognitive side-effects in addition to the therapeutic effect when adjusting stimulation parameters. Furthermore, this study introduces a novel window into cognitive and affective processes by modulating the associative and limbic networks with direct stimulation of key nodes in the thalamus.


Subject(s)
Anterior Thalamic Nuclei/physiology , Attention/physiology , Deep Brain Stimulation , Emotions/physiology , Executive Function/physiology , Adult , Epilepsy/physiopathology , Epilepsy/surgery , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...