Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 239: 124709, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31499302

ABSTRACT

The effect of organic fertilizers on soil phosphorus (P) availability is usually mainly associated with the rate and forms of P applied, while they also alter the soil physical-chemical properties, able to change P availability. We aimed to highlight the impact of pH and organic C modifications in soil on the inorganic P (Pi) sorption capacity and availability as compared to the effect of P accumulation after mineral or organic fertilizers. We conducted a 10-years-old field experiment on an andosol and compared fields that had been amended with mineral or organic (dairy slurry and manure compost) fertilizers against a non-fertilized control. Water and Olsen extractions and Pi sorption experiments were realized on soils sampled after 6 and 10 years of trial. We also realized an artificial and ex situ alkalization of the control soil to isolate the effect of pH on Pi sorption capacity. Organic fertilizer application increased total P, pH, and organic C in soil. Pi-Olsen increased mainly with soil total P (r2 adj = 0.79), while Pi-water increased jointly with soil total P and pH (r2 adj = 0.85). The Pi sorption capacity decreased with organic fertilizer application. Artificial and ex situ alkalization of the control soil showed that Pi sorption capacity decreased with increasing pH. Our study demonstrated that, beyond the P fertilization rate, the increase in organic C content and even more so in pH induced by a decade of organic fertilizer applications in soil decreased the Pi sorption capacity and consequently increased Pi-water in soil.


Subject(s)
Fertilizers , Phosphorus/chemistry , Soil/chemistry , Adsorption , Carbon , Hydrogen-Ion Concentration/drug effects , Manure , Minerals , Phosphorus/analysis , Phosphorus/pharmacology , Soil/standards
2.
Waste Manag ; 33(1): 184-92, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22975024

ABSTRACT

The benefits of using organic waste as fertilizer and soil amendment should be assessed together with the environmental impacts due to the possible presence of heavy metals (HMs). This study involved analysing major element and HM contents in raw and size-fractionated organic wastes (17 sewage sludges and composts) from developed and developing countries. The overall HM concentration pattern showed an asymmetric distribution due to the presence of some wastes with extremely high concentrations. HM concentrations were correlated with the size of cities or farms where the wastes had been produced, and HM were differentiated with respect to their origins (geogenic: Cr-Ni; anthropogenic agricultural and urban: Cu-Zn; anthropogenic urban: Cd-Pb). Size fractionation highlighted Cd, Cu, Zn and Pb accumulation in fine size fractions, while Cr and Ni were accumulated in the coarsest. HM associations with major elements revealed inorganic (Al, Fe, etc.) bearing phases for Cr and Ni, and sulfur or phosphorus species for Cd, Cu Pb and Zn.


Subject(s)
Fertilizers/analysis , Garbage , Metals, Heavy/analysis , Waste Products/analysis , Agriculture , Crops, Agricultural , Hazardous Substances/analysis , Particle Size , Principal Component Analysis
3.
Environ Sci Technol ; 46(5): 2652-60, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22296233

ABSTRACT

Recent reports suggest that significant fractionation of stable metal isotopes occurs during biogeochemical cycling and that the uptake into higher plants is an important process. To test isotopic fractionation of copper (Cu) and zinc (Zn) during plant uptake and constrain its controls, we grew lettuce, tomato, rice and durum wheat under controlled conditions in nutrient solutions with variable metal speciation and iron (Fe) supply. The results show that the fractionation patterns of these two micronutrients are decoupled during the transport from nutrient solution to root. In roots, we found an enrichment of the heavier isotopes for Zn, in agreement with previous studies, but an enrichment of isotopically light Cu, suggesting a reduction of Cu(II) possibly at the surfaces of the root cell plasma membranes. This observation holds for both graminaceous and nongraminaceaous species and confirms that reduction is a predominant and ubiquitous mechanism for the acquisition of Cu into plants similar to the mechanism for the acquisition of iron (Fe) by the strategy I plant species. We propose two preliminary models of isotope fractionation processes of Cu and Zn in plants with different uptake strategies.


Subject(s)
Copper/metabolism , Models, Biological , Plant Roots/metabolism , Plants/metabolism , Zinc/metabolism , Adsorption , Biodegradation, Environmental , Biological Transport , Biomass , Cell Membrane/metabolism , Chemical Fractionation , Diffusion , Ions , Iron/metabolism , Oxidation-Reduction , Plant Development , Plant Shoots/metabolism , Solutions , Surface Properties , Zinc Isotopes/metabolism
4.
Environ Sci Technol ; 43(15): 5686-91, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19731663

ABSTRACT

Using a root mat approach, we quantified how root-induced alkalization controlled the establishment of copper (Cu) gradients in the rhizosphere of durum wheat (Triticum turgidum durum L.) cropped in a strongly acidic, Cu-contaminated soil. Rhizosphere pH increased over 6 mm in soil, reaching up to +2.8 units close to root mat surface. Conversely, free Cu2+ activity decreased by 3 orders of magnitude and total Cu concentration by 3-fold in the rhizosphere solution, while labile Cu assessed by DGT (diffusive gradients in thin films) was halved. The DIFS (DGT-induced flux in soils and sediments) model failed to adequately simulate Cu depletion in the rhizosphere solution, showing that root-induced alkalization almost entirely explained Cu depletion while plant uptake had little impact. We modeled the observed pH gradient to recalculate its radial extension around a single root. The gradient of free Cu2+ activity in solution, deduced from pH modeling, extended over 1-4 mm in the rhizosphere depending on root radius and OH- efflux from root. Rhizosphere alkalization dramatically decreased root exposure to Cu, substantiating that root-induced chemical changes in the rhizosphere should be better accounted for to assess metal bioavailability to plants.


Subject(s)
Copper/chemistry , Copper/metabolism , Soil Pollutants/chemistry , Triticum/metabolism , Buffers , Environment , Environmental Monitoring/methods , Hydrogen-Ion Concentration , Models, Statistical , Plant Roots/metabolism , Regression Analysis , Soil , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...