Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13377, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862698

ABSTRACT

In this work, optical fiber Bragg grating sensors were used to measure water velocity and examine how it was distributed in open channels. Several types of coatings were incorporated into the design of the sensors to examine their effects on the strain that the fibers experienced as a result of the water flow. Due to their low elastic coefficient, which reduced the hysteresis, the results indicated that the aluminum- and acrylate-coated fibers had the best performance. ANSYS-CFX V2020 R2 software was used to model the strain encountered by the fibers under various flow rates to assess the performance of the FBG sensors. The calculations and actual data exhibited good convergence, demonstrating the accuracy of the FBG sensors in determining water velocity. The study illustrated the usability of the proposal in both scenarios by contrasting its application in rivers and channels.

2.
Opt Express ; 23(24): 30985-90, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698729

ABSTRACT

In this work, two all polarization-maintaining (PM) high-birefringence (Hi-Bi) fiber loop mirrors (FLM) which are immune to external polarization perturbations are validated both theoretically and experimentally. Simplified and stable versions of classical FLMs were attained using a PM-coupler and by fusing the different Hi-Bi fiber sections with an adequate rotation angle between them. Since the polarization states are fixed along the whole fiber loop, no polarization controllers are needed. This simplifies the operation and increases the stability of the systems, which were also validated as ultra-high resolution sensors, experimentally obtaining a resolution of 6.2∙10-4 °C without averaging.

3.
Sensors (Basel) ; 13(12): 17434-44, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24351644

ABSTRACT

We propose and demonstrate the use of spatial multiplexing as a means to reduce the costs of distributed sensing networks. We propose a new scheme in which remote power-by-light switching is deployed to scan multiple branches of a distributed sensing network based on Brillouin Optical Time Domain Analysis (BOTDA) sensors. A proof-of-concept system is assembled with two 5-km sensor fiber branches that are alternatively monitored using a fast remotely controlled and optically powered optical switch. The multiplexed distributed sensor fibers were located 10 km away from the interrogation unit and a Raman pump is used to remotely power the switch. Furthermore, the deployed BOTDA unit uses an alternative configuration that can lead to simplified setups.

4.
Sensors (Basel) ; 13(7): 8095-102, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23799491

ABSTRACT

A photonic crystal fiber-based sensing head is proposed for strain measurements. The sensor comprises a Hi-Bi PCF sensing head to measure interferometric signals in-reflection. An experimental background study of the sensing head is conducted through an optical backscatter reflectometer confirming the theoretical predictions, also included. A cost effective setup is proposed where a laser is used as illumination source, which allows accurate high precision strain measurements. Thus, a sensitivity of ~7.96 dB/me was achieved in a linear region of 1,200 µe.


Subject(s)
Fiber Optic Technology/instrumentation , Interferometry/instrumentation , Photometry/instrumentation , Refractometry/instrumentation , Transducers , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Photons , Stress, Mechanical
5.
Opt Express ; 21(3): 2971-7, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23481755

ABSTRACT

This work experimentally demonstrates a long-range optical fiber sensing network for the multiplexing of fiber sensors based on photonic crystal fibers. Specifically, six photonic crystal fiber sensors which are based on a Sagnac interferometer that includes a suspended-core fiber have been used. These sensors offer a high sensitivity for micro-displacement measurements. The fiber sensor network presents a ladder structure and its operation mode is based on a fiber ring laser which combines Raman and Erbium doped fiber amplification. Thus, we show the first demonstration of photonic crystal fiber sensors for remote measurement applications up to 75 km.


Subject(s)
Fiber Optic Technology/instrumentation , Interferometry/instrumentation , Lasers, Solid-State , Photometry/instrumentation , Spectrum Analysis, Raman/instrumentation , Miniaturization
6.
Opt Express ; 19(12): 11906-15, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21716424

ABSTRACT

In the present work, a multiwavelength fiber laser based in the combination of a double-random mirror and a suspended-core Sagnac interferometer is presented. The double-random mirror acts by itself as a random laser, presenting a 30dB SNR, as result of multiple Rayleigh scattering events produced in the dispersion compensating fibers by the Raman amplification. The suspended-core fiber Sagnac interferometer provides the multi peak channeled spectrum, which can be tuned by changing the length of the fiber. The result of this combination is a stable multiwavelength peak laser with a minimum of ~25dB SNR, which is highly sensitive to polarization induced variations.

SELECTION OF CITATIONS
SEARCH DETAIL
...