Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(21): eabm7585, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35622924

ABSTRACT

Nanomechanical resonators are a key tool for future quantum technologies, such as quantum force sensors and interfaces, and for studies of macroscopic quantum physics. The ability to prepare room temperature nonclassical states is a major outstanding challenge. It has been suggested that this could be achieved using a fast continuous measurement to break the usual symmetry between position and momentum. Here, we demonstrate this symmetry breaking and use it to prepare a thermally squeezed mechanical state. Our experiments take advantage of collective measurements on multiple mechanical modes, which we show can increase the measurement speed and improve state preparation. Theoretically, we show that this result extends to the quantum regime, relaxing the requirements to generate nonclassical states. We predict that multimode conditioning can enable room temperature quantum squeezing with existing technology. Our work paves the way toward room temperature quantum nanomechanical devices and toward their application in quantum technology and fundamental science.

2.
Phys Rev Lett ; 125(4): 043604, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32794807

ABSTRACT

We revisit quantum state preparation of an oscillator by continuous linear position measurement. Quite general analytical expressions are derived for the conditioned state of the oscillator. Remarkably, we predict that quantum squeezing is possible outside of both the backaction dominated and quantum coherent oscillation regimes, relaxing experimental requirements even compared to ground-state cooling. This provides a new way to generate nonclassical states of macroscopic mechanical oscillators, and opens the door to quantum sensing and tests of quantum macroscopicity at room temperature.

3.
Adv Mater ; 26(36): 6348-53, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24889714

ABSTRACT

A cavity optomechanical magneto-meter operating in the 100 pT range is reported. The device operates at earth field, achieves tens of megahertz bandwidth with 60 µm spatial resolution and microwatt optical-power requirements. These unique capabilities may have a broad range of applications including cryogen-free and microfluidic magnetic resonance imaging (MRI), and investigation of spin-physics in condensed matter systems.

4.
Sci Rep ; 3: 2974, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24131939

ABSTRACT

Whispering gallery mode biosensors allow selective unlabelled detection of single proteins and, combined with quantum limited sensitivity, the possibility for noninvasive real-time observation of motor molecule motion. However, to date technical noise sources, most particularly low frequency laser noise, have constrained such applications. Here we introduce a new technique for whispering gallery mode sensing based on direct detection of back-scattered light. This experimentally straightforward technique is immune to frequency noise in principle, and further, acts to suppress thermorefractive noise. We demonstrate 27 dB of frequency noise suppression, eliminating frequency noise as a source of sensitivity degradation and allowing an absolute frequency shift sensitivity of 76 kHz. Our results open a new pathway towards single molecule biophysics experiments and ultrasensitive biosensors.


Subject(s)
Biosensing Techniques , Models, Theoretical
5.
Appl Opt ; 51(30): 7333-8, 2012 Oct 20.
Article in English | MEDLINE | ID: mdl-23089789

ABSTRACT

We investigate the dynamics of photoinduced index changes in chalcogenide As(2)S(3) fibers. Using a novel phase sensitive technique for measuring the photoinduced index change, we find that the index evolution is a two-stage process: it consists of a fast reduction and a subsequent slow increase in the refractive index. We show that the index change depends strongly on the beam intensity with both positive and negative changes possible. These findings can have application in design and fabrication of photoinduced devices such as Bragg gratings and photonic cavities.

SELECTION OF CITATIONS
SEARCH DETAIL
...