Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Diabetologia ; 56(8): 1743-51, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23674172

ABSTRACT

AIMS/HYPOTHESIS: HNF1A-MODY is a monogenic form of diabetes caused by mutations in the HNF1A gene. Here we identify, for the first time, HNF1A-MODY-associated microRNAs (miRNAs) that can be detected in the serum of HNF1A-MODY carriers. METHODS: An miRNA array was carried out in rat INS-1 insulinoma cells inducibly expressing the common human Pro291fsinsC-HNF1A frame shift mutation. Differentially expressed miRNAs were validated by quantitative real-time PCR. Expression of miRNAs in the serum of HNF1A-MODY carriers (n = 31), MODY-negative family members (n = 10) and individuals with type 2 diabetes mellitus (n = 17) was quantified by absolute real-time PCR analysis. RESULTS: Inducible expression of Pro291fsinsC-HNF1A in INS-1 cells caused a significant upregulation of three miRNAs (miR-103, miR-224, miR-292-3p). The differential expression of two miRNAs (miR-103 and miR-224) was validated in vitro. Strongly elevated levels of miR-103 and miR-224 could be detected in the serum of HNF1A-MODY carriers compared with MODY-negative family controls. Serum levels of miR-103 distinguished HNF1A-MODY carriers from HbA1c-matched individuals with type 2 diabetes mellitus. CONCLUSIONS/INTERPRETATION: Our study demonstrates that the pathophysiology of HNF1A-MODY is associated with the overexpression of miR-103 and miR-224. Furthermore, our study demonstrates that these miRNAs can be readily detected in the serum of HNF1A-MODY carriers.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , MicroRNAs/genetics , Animals , Frameshift Mutation/genetics , Insulinoma/genetics , Rats , Real-Time Polymerase Chain Reaction , T Cell Transcription Factor 1/genetics
2.
Oncogene ; 32(24): 2927-36, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-22797059

ABSTRACT

MicroRNAs (miRNAs) contribute to the pathogenesis of many forms of cancer, including the pediatric cancer neuroblastoma, but the underlying mechanisms leading to altered miRNA expression are often unknown. Here, a novel integrated approach for analyzing DNA methylation coupled with miRNA and mRNA expression data sets identified 67 epigenetically regulated miRNA in neuroblastoma. A large proportion (42%) of these miRNAs was associated with poor patient survival when underexpressed in tumors. Moreover, we demonstrate that this panel of epigenetically silenced miRNAs targets a large set of genes that are overexpressed in tumors from patients with poor survival in a highly redundant manner. The genes targeted by the epigenetically regulated miRNAs are enriched for a number of biological processes, including regulation of cell differentiation. Functional studies involving ectopic overexpression of several of the epigenetically silenced miRNAs had a negative impact on neuroblastoma cell viability, providing further support to the concept that inactivation of these miRNAs is important for neuroblastoma disease pathogenesis. One locus, miR-340, induced either differentiation or apoptosis in a cell context dependent manner, indicating a tumor suppressive function for this miRNA. Intriguingly, it was determined that miR-340 is upregulated by demethylation of an upstream genomic region that occurs during the process of neuroblastoma cell differentiation induced by all-trans retinoic acid (ATRA). Further biological studies of miR-340 revealed that it directly represses the SOX2 transcription factor by targeting of its 3'-untranslated region, explaining the mechanism by which SOX2 is downregulated by ATRA. Although SOX2 contributes to the maintenance of stem cells in an undifferentiated state, we demonstrate that miR-340-mediated downregulation of SOX2 is not required for ATRA induced differentiation to occur. In summary, our results exemplify the dynamic nature of the miRNA epigenome and identify a remarkable network of miRNA/mRNA interactions that significantly contribute to neuroblastoma disease pathogenesis.


Subject(s)
Epigenesis, Genetic/genetics , Gene Regulatory Networks/genetics , MicroRNAs/genetics , Neuroblastoma/etiology , Neuroblastoma/genetics , 3' Untranslated Regions/genetics , Cell Line, Tumor , Computational Biology , DNA Methylation/drug effects , DNA Methylation/genetics , Epigenesis, Genetic/drug effects , Gene Regulatory Networks/drug effects , Genomics , Humans , Neuroblastoma/pathology , SOXB1 Transcription Factors/genetics , Survival Analysis , Tretinoin/pharmacology
3.
Br J Cancer ; 107(6): 967-76, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22892391

ABSTRACT

BACKGROUND: Neuroblastoma remains a major cause of cancer-linked mortality in children. miR-204 has been used in microRNA expression signatures predictive of neuroblastoma patient survival. The aim of this study was to explore the independent association of miR-204 with survival in a neuroblastoma cohort, and to investigate the phenotypic effects mediated by miR-204 expression in neuroblastoma. METHODS: Neuroblastoma cell lines were transiently transfected with miR-204 mimics and assessed for cell viability using MTS assays. Apoptosis levels in cell lines were evaluated by FACS analysis of Annexin V-/propidium iodide-stained cells transfected with miR-204 mimics and treated with chemotherapy drug or vehicle control. Potential targets of miR-204 were validated using luciferase reporter assays. RESULTS: miR-204 expression in primary neuroblastoma tumours was predictive of patient event-free and overall survival, independent of established known risk factors. Ectopic miR-204 expression significantly increased sensitivity to cisplatin and etoposide in vitro. miR-204 direct targeting of the 3' UTR of BCL2 and NTRK2 (TrkB) was confirmed. CONCLUSION: miR-204 is a novel predictor of outcome in neuroblastoma, functioning, at least in part, through increasing sensitivity to cisplatin by direct targeting and downregulation of anti-apoptotic BCL2. miR-204 also targets full-length NTRK2, a potent oncogene involved with chemotherapy drug resistance in neuroblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm , MicroRNAs/pharmacology , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Proto-Oncogene Proteins/drug effects , Receptor, trkB/drug effects , Analysis of Variance , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Disease Models, Animal , Disease-Free Survival , Down-Regulation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Etoposide/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Membrane Glycoproteins/drug effects , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred Strains , Mice, SCID , Neuroblastoma/mortality , Predictive Value of Tests , Proportional Hazards Models , Protein-Tyrosine Kinases/drug effects , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2 , Real-Time Polymerase Chain Reaction , Receptor, trkB/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL