Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 72: 103205, 2023 10.
Article in English | MEDLINE | ID: mdl-37734317

ABSTRACT

Elevated circulating lipoprotein(a) (Lp(a)) is a genetically determined risk factor for coronary artery disease and aortic valve stenosis (Tsimikas, 2017). Importantly, the LPA gene, which encodes the apolipoprotein(a) (protein-component of Lp(a)), is missing in most species, and human liver cell-lines do not secrete Lp(a). There is a need for the development of human in vitro models suitable for investigating biological mechanisms involved in Lp(a) metabolism. We here generated and characterized iPSCs from a patient with extremely high Lp(a) plasma levels genetically determined (Coassin et al., 2022). This unique cellular model offers great opportunities and new perspectives for investigations on biological mechanisms involved in Lp(a) metabolism.


Subject(s)
Aortic Valve Stenosis , Coronary Artery Disease , Induced Pluripotent Stem Cells , Humans , Lipoprotein(a)/genetics , Lipoprotein(a)/metabolism , Aortic Valve/metabolism , Induced Pluripotent Stem Cells/metabolism , Aortic Valve Stenosis/etiology , Aortic Valve Stenosis/genetics , Coronary Artery Disease/etiology , Coronary Artery Disease/genetics , Risk Factors
2.
STAR Protoc ; 3(4): 101680, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36115027

ABSTRACT

This manuscript proposes an efficient and reproducible protocol for the generation of genetically modified human induced pluripotent stem cells (hiPSCs) by genome editing using CRISPR-Cas9 technology. Here, we describe the experimental strategy for generating knockout (KO) and knockin (KI) clonal populations of hiPSCs using single-cell sorting by flow cytometry. We efficiently achieved up to 15 kb deletions, molecular tag insertions, and single-nucleotide editing in hiPSCs. We emphasize the efficacy of this approach in terms of cell culture time. For complete details on the use and execution of this protocol, please refer to Canac et al. (2022) and Bray et al. (2022).


Subject(s)
Gene Editing , Induced Pluripotent Stem Cells , Humans , Gene Editing/methods , CRISPR-Cas Systems , Clone Cells , Cell Culture Techniques
3.
Arterioscler Thromb Vasc Biol ; 42(10): 1262-1271, 2022 10.
Article in English | MEDLINE | ID: mdl-36047410

ABSTRACT

BACKGROUND: In mice, GPR146 (G-protein-coupled receptor 146) deficiency reduces plasma lipids and protects against atherosclerosis. Whether these findings translate to humans is unknown. METHODS: Common and rare genetic variants in the GPR146 gene locus were used as research instruments in the UK Biobank. The Lifelines, The Copenhagen-City Heart Study, and a cohort of individuals with familial hypobetalipoproteinemia were used to find and study rare GPR146 variants. RESULTS: In the UK Biobank, carriers of the common rs2362529-C allele present with lower low-density lipoprotein cholesterol, apo (apolipoprotein) B, high-density lipoprotein cholesterol, apoAI, CRP (C-reactive protein), and plasma liver enzymes compared with noncarriers. Carriers of the common rs1997243-G allele, associated with higher GPR146 expression, present with the exact opposite phenotype. The associations with plasma lipids of the above alleles are allele dose-dependent. Heterozygote carriers of a rare coding variant (p.Pro62Leu; n=2615), predicted to be damaging, show a stronger reductions in the above parameters compared with carriers of the common rs2362529-C allele. The p.Pro62Leu variant is furthermore shown to segregate with low low-density lipoprotein cholesterol in a family with familial hypobetalipoproteinemia. Compared with controls, carriers of the common rs2362529-C allele show a marginally reduced risk of coronary artery disease (P=0.03) concomitant with a small effect size on low-density lipoprotein cholesterol (average decrease of 2.24 mg/dL in homozygotes) of this variant. Finally, mendelian randomization analyses suggest a causal relationship between GPR146 gene expression and plasma lipid and liver enzyme levels. CONCLUSIONS: This study shows that carriers of new genetic GPR146 variants have a beneficial cardiometabolic risk profile, but it remains to be shown whether genetic or pharmaceutical inhibition of GPR146 protects against atherosclerosis in humans.


Subject(s)
Atherosclerosis , Hypobetalipoproteinemias , Animals , Apolipoproteins B/genetics , Atherosclerosis/genetics , Atherosclerosis/prevention & control , C-Reactive Protein , Cholesterol, HDL , Cholesterol, LDL , Humans , Hypobetalipoproteinemias/genetics , Mice , Pharmaceutical Preparations , Receptors, G-Protein-Coupled/genetics
4.
Stem Cell Res ; 60: 102721, 2022 04.
Article in English | MEDLINE | ID: mdl-35247835

ABSTRACT

Dyslipidemia is a key modifiable causal risk factor involved in the development of atherosclerotic cardiovascular disease. Recently, the G protein-coupled receptor 146 (GPR146), a member of the G-coupled protein receptors' family, has been shown to be a regulator of plasma cholesterol. Inhibition of hepatic GPR146 in mice displays protective effect against both hypercholesterolemia and atherosclerosis. Here, we characterize a genetically engineered human induced pluripotent stem cell (hiPSC) model invalidated for GPR146 (ITXi001-A-1) using CRISPR-Cas9 editing technology. Differentiation of ITXi001-A-1 towards hepatic fate will provide a suitable model for deciphering the molecular mechanisms sustaining the beneficial metabolic effects of GPR146 inhibition.


Subject(s)
Induced Pluripotent Stem Cells , Animals , CRISPR-Cas Systems/genetics , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/metabolism , Liver , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...