Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Clin Cancer Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848043

ABSTRACT

PURPOSE: Uterine leiomyosarcoma (LMS) is an aggressive sarcoma and a subset of which exhibit DNA repair defects. Polo-like kinase 4 (PLK4) precisely modulates mitosis, and its inhibition causes chromosome missegregation and increased DNA damage. We hypothesize that PLK4 inhibition is an effective LMS treatment. EXPERIMENTAL DESIGN: Genomic profiling of clinical uterine LMS samples was performed, and homologous recombination (HR) deficiency scores were calculated. PLK4 inhibitor (CFI-400945) with and without an ataxia telangiectasia mutated (ATM) inhibitor (AZD0156) were tested in vitro on gynecological sarcoma cell lines SK-UT-1, and SKN, and SK-LMS-1. Findings were validated in vivo using the SK-UT-1 xenograft model in Balb/c nude mouse model. The effects of CFI-400945 were also evaluated in a BRCA2 knockout SK-UT-1 cell line. The mechanisms of DNA repair were analyzed using a DNA damage reporter assay. RESULTS: Uterine LMS had a high HR deficiency score, overexpressed PLK4 mRNA, and displayed mutations in genes responsible for DNA repair. CFI-400945 demonstrated effective antitumor activity in vitro and in vivo. The addition of AZD0156 resulted in drug synergism, largely due to a preference for nonhomologous end-joining (NHEJ) DNA repair. Compared to wild-type cells, BRCA2 knockouts were more sensitive to PLK4 inhibition when both HR and NHEJ repairs were impaired. CONCLUSIONS: Uterine LMS with DNA repair defects is sensitive to PLK4 inhibition because of the effects of chromosome missegregation and increased DNA damage. Loss-of-function BRCA2 alterations or pharmacological inhibition of ATM enhanced the efficacy of PLK4 inhibitor. Genomic profiling of an advanced-stage or recurrent uterine LMS may guide therapy.

2.
ACS Chem Biol ; 19(4): 938-952, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38565185

ABSTRACT

Phenotypic assays have become an established approach to drug discovery. Greater disease relevance is often achieved through cellular models with increased complexity and more detailed readouts, such as gene expression or advanced imaging. However, the intricate nature and cost of these assays impose limitations on their screening capacity, often restricting screens to well-characterized small compound sets such as chemogenomics libraries. Here, we outline a cheminformatics approach to identify a small set of compounds with likely novel mechanisms of action (MoAs), expanding the MoA search space for throughput limited phenotypic assays. Our approach is based on mining existing large-scale, phenotypic high-throughput screening (HTS) data. It enables the identification of chemotypes that exhibit selectivity across multiple cell-based assays, which are characterized by persistent and broad structure activity relationships (SAR). We validate the effectiveness of our approach in broad cellular profiling assays (Cell Painting, DRUG-seq, and Promotor Signature Profiling) and chemical proteomics experiments. These experiments revealed that the compounds behave similarly to known chemogenetic libraries, but with a notable bias toward novel protein targets. To foster collaboration and advance research in this area, we have curated a public set of such compounds based on the PubChem BioAssay dataset and made it available for use by the scientific community.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Small Molecule Libraries , Drug Discovery/methods , High-Throughput Screening Assays/methods , Cheminformatics/methods , Small Molecule Libraries/chemistry , Structure-Activity Relationship
3.
Leukemia ; 38(3): 502-512, 2024 03.
Article in English | MEDLINE | ID: mdl-38114624

ABSTRACT

CFI-400945 is a selective oral polo-like kinase 4 (PLK4) inhibitor that regulates centriole duplication. PLK4 is aberrantly expressed in patients with acute myeloid leukemia (AML). Preclinical studies indicate that CFI-400945 has potent in vivo efficacy in hematological malignancies and xenograft models, with activity in cells harboring TP53 mutations. In this phase 1 study in very high-risk patients with relapsed/refractory AML and myelodysplastic syndrome (MDS) (NCT03187288), 13 patients were treated with CFI-400945 continuously in dose escalation from 64 mg/day to 128 mg/day. Three of the 9 efficacy evaluable AML patients achieved complete remission (CR). Two of 4 AML patients (50%) with TP53 mutations and complex monosomal karyotype achieved a CR with 1 patient proceeding to allogenic stem cell transplant. A third patient with TP53 mutated AML had a significant reduction in marrow blasts by > 50% with an improvement in neutrophil and platelet counts. Responses were observed after 1 cycle of therapy. Dose-limiting toxicity was enteritis/colitis. A monotherapy and combination therapy study with a newer crystal form of CFI-400945 in patients with AML, MDS and chronic myelomonocytic leukemia (CMML) is ongoing (NCT04730258).


Subject(s)
Indazoles , Indoles , Leukemia, Myeloid, Acute , Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Humans , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Leukemia, Myelomonocytic, Chronic/drug therapy , Disease-Free Survival , Protein Serine-Threonine Kinases/genetics
4.
Cell Rep ; 42(12): 113581, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38103201

ABSTRACT

Inflammasomes are multiprotein signaling complexes that activate the innate immune system. Canonical inflammasomes recruit and activate caspase-1, which then cleaves and activates IL-1ß and IL-18, as well as gasdermin D (GSDMD) to induce pyroptosis. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are known to cleave GSDMD, but their role in direct processing of other substrates besides GSDMD has remained unknown. Here, we show that CASP4/5 but not CASP11 can directly cleave and activate IL-18. However, CASP4/5/11 can all cleave IL-1ß to generate a 27-kDa fragment that deactivates IL-1ß signaling. Mechanistically, we demonstrate that the sequence identity of the tetrapeptide sequence adjacent to the caspase cleavage site regulates IL-18 and IL-1ß recruitment and activation. Altogether, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation that may aid in developing new therapeutics for immune-related disorders.


Subject(s)
Caspases , Interleukin-18 , Interleukin-1beta , Caspases/genetics , Caspases/immunology , Interleukin-18/chemistry , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/chemistry , Interleukin-1beta/genetics , Interleukin-1beta/immunology , RAW 264.7 Cells , HEK293 Cells , HeLa Cells , THP-1 Cells , Humans , Inflammasomes/immunology , Signal Transduction/genetics , Proteolysis , Protein Binding , Protein Multimerization , Salmonella Infections/enzymology , Salmonella Infections/immunology
5.
Blood ; 142(23): 2002-2015, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37738460

ABSTRACT

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the "don't-eat-me" signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.


Subject(s)
Histones , Leukemia, Myeloid, Acute , Animals , Mice , Histones/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mutation , Methylation , Nucleotidyltransferases/metabolism , Leukemia, Myeloid, Acute/pathology , Immunity , Polyploidy
6.
iScience ; 26(10): 107804, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37720099

ABSTRACT

Human pluripotent stem cell (hPSC)-derived tissues can be used to model diseases in cell types that are challenging to harvest and study at-scale, such as neutrophils. Neutrophil dysregulation, specifically neutrophil extracellular trap (NET) formation, plays a critical role in the prognosis and progression of multiple diseases, including COVID-19. While hPSCs can generate limitless neutrophils (iNeutrophils) to study these processes, current differentiation protocols generate heterogeneous cultures of granulocytes and precursors. Here, we describe a method to improve iNeutrophil differentiations through the deletion of GATA1. GATA1 knockout (KO) iNeutrophils are nearly identical to primary neutrophils in form and function. Unlike wild-type iNeutrophils, GATA1 KO iNeutrophils generate NETs in response to the physiologic stimulant lipopolysaccharide, suggesting they are a more accurate model when performing NET inhibitor screens. Furthermore, through deletion of CYBB, we demonstrate that GATA1 KO iNeutrophils are a powerful tool in determining involvement of a given protein in NET formation.

7.
bioRxiv ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824844

ABSTRACT

The mammalian innate immune system uses germline-encoded cytosolic pattern-recognition receptors (PRRs) to detect intracellular danger signals. At least six of these PRRs are known to form multiprotein complexes called inflammasomes which activate cysteine proteases known as caspases. Canonical inflammasomes recruit and activate caspase-1 (CASP1), which in turn cleaves and activates inflammatory cytokines such as IL-1ß and IL-18, as well as the pore forming protein, gasdermin D (GSDMD), to induce pyroptotic cell death. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are activated by intracellular LPS to cleave GSDMD, but their role in direct processing of inflammatory cytokines has not been established. Here we show that active CASP4/5 directly cleave IL-18 to generate the active species. Surprisingly, we also discovered that CASP4/5/11 cleave IL-1ß at D27 to generate a 27 kDa fragment that is predicted to be inactive and cannot signal to the IL-1 receptor. Mechanistically, we discovered that the sequence identity of the P4-P1 tetrapeptide sequence adjacent to the caspase cleavage site (D116) regulates the recruitment and processing of IL-1ß by inflammatory caspases to generate the bioactive species. Thus, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation.

8.
Hepatology ; 77(3): 729-744, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35302667

ABSTRACT

BACKGROUND AND AIMS: Prognosis of HCC remains poor due to lack of effective therapies. Immune checkpoint inhibitors (ICIs) have delayed response and are only effective in a subset of patients. Treatments that could effectively shrink the tumors within a short period of time are idealistic to be employed together with ICIs for durable tumor suppressive effects. HCC acquires increased tolerance to aneuploidy. The rapid division of HCC cells relies on centrosome duplication. In this study, we found that polo-like kinase 4 (PLK4), a centrosome duplication regulator, represents a therapeutic vulnerability in HCC. APPROACH AND RESULTS: An orally available PLK4 inhibitor, CFI-400945, potently suppressed proliferating HCC cells by perturbing centrosome duplication. CFI-400945 induced endoreplication without stopping DNA replication, causing severe aneuploidy, DNA damage, micronuclei formation, cytosolic DNA accumulation, and senescence. The cytosolic DNA accumulation elicited the DEAD box helicase 41-stimulator of interferon genes-interferon regulatory factor 3/7-NF-κß cytosolic DNA sensing pathway, thereby driving the transcription of senescence-associated secretory phenotypes, which recruit immune cells. CFI-400945 was evaluated in liver-specific p53/phosphatase and tensin homolog knockout mouse HCC models established by hydrodynamic tail vein injection. Tumor-infiltrated immune cells were analyzed. CFI-400945 significantly impeded HCC growth and increased infiltration of cluster of differentiation 4-positive (CD4 + ), CD8 + T cells, macrophages, and natural killer cells. Combination therapy of CFI-400945 with anti-programmed death-1 showed a tendency to improve HCC survival. CONCLUSIONS: We show that by targeting a centrosome regulator, PLK4, to activate the cytosolic DNA sensing-mediated immune response, CFI-400945 effectively restrained tumor progression through cell cycle inhibition and inducing antitumor immunity to achieve a durable suppressive effect even in late-stage mouse HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Aneuploidy , Carcinoma, Hepatocellular/pathology , Cell Cycle , Cell Line, Tumor , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism
9.
Sci Adv ; 8(36): eabq4293, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36070391

ABSTRACT

Inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) are standard first-line treatments for metastatic ER+ breast cancer. However, acquired resistance to CDK4/6i invariably develops, and the molecular phenotypes and exploitable vulnerabilities associated with resistance are not yet fully characterized. We developed a panel of CDK4/6i-resistant breast cancer cell lines and patient-derived organoids and demonstrate that a subset of resistant models accumulates mitotic segregation errors and micronuclei, displaying increased sensitivity to inhibitors of mitotic checkpoint regulators TTK and Aurora kinase A/B. RB1 loss, a well-recognized mechanism of CDK4/6i resistance, causes such mitotic defects and confers enhanced sensitivity to TTK inhibition. In these models, inhibition of TTK with CFI-402257 induces premature chromosome segregation, leading to excessive mitotic segregation errors, DNA damage, and cell death. These findings nominate the TTK inhibitor CFI-402257 as a therapeutic strategy for a defined subset of ER+ breast cancer patients who develop resistance to CDK4/6i.


Subject(s)
M Phase Cell Cycle Checkpoints , Neoplasms , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics
10.
Proc Natl Acad Sci U S A ; 119(32): e2119514119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914158

ABSTRACT

Deregulation of cell cycle is a typical feature of cancer cells. Normal cells rely on the strictly coordinated spindle assembly checkpoint (SAC) to maintain the genome integrity and survive. However, cancer cells could bypass this checkpoint mechanism. In this study, we showed the clinical relevance of threonine tyrosine kinase (TTK) protein kinase, a central regulator of the SAC, in hepatocellular carcinoma (HCC) and its potential as therapeutic target. Here, we reported that a newly developed, orally active small molecule inhibitor targeting TTK (CFI-402257) effectively suppressed HCC growth and induced highly aneuploid HCC cells, DNA damage, and micronuclei formation. We identified that CFI-402257 also induced cytosolic DNA, senescence-like response, and activated DDX41-STING cytosolic DNA sensing pathway to produce senescence-associated secretory phenotypes (SASPs) in HCC cells. These SASPs subsequently led to recruitment of different subsets of immune cells (natural killer cells, CD4+ T cells, and CD8+ T cells) for tumor clearance. Our mass cytometry data illustrated the dynamic changes in the tumor-infiltrating immune populations after treatment with CFI-402257. Further, CFI-402257 improved survival in HCC-bearing mice treated with anti-PD-1, suggesting the possibility of combination treatment with immune checkpoint inhibitors in HCC patients. In summary, our study characterized CFI-402257 as a potential therapeutic for HCC, both used as a single agent and in combination therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Protein Kinase Inhibitors , Pyrazoles , Pyrimidines , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Killer Cells, Natural/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mice , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases/metabolism , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use
11.
Mol Biol Cell ; 33(6): ar49, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35353015

ABSTRACT

Most variants in most genes across most organisms have an unknown impact on the function of the corresponding gene. This gap in knowledge is especially acute in cancer, where clinical sequencing of tumors now routinely reveals patient-specific variants whose functional impact on the corresponding genes is unknown, impeding clinical utility. Transcriptional profiling was able to systematically distinguish these variants of unknown significance as impactful vs. neutral in an approach called expression-based variant-impact phenotyping. We profiled a set of lung adenocarcinoma-associated somatic variants using Cell Painting, a morphological profiling assay that captures features of cells based on microscopy using six stains of cell and organelle components. Using deep-learning-extracted features from each cell's image, we found that cell morphological profiling (cmVIP) can predict variants' functional impact and, particularly at the single-cell level, reveals biological insights into variants that can be explored at our public online portal. Given its low cost, convenient implementation, and single-cell resolution, cmVIP profiling therefore seems promising as an avenue for using non-gene specific assays to systematically assess the impact of variants, including disease-associated alleles, on gene function.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Alleles , Humans , Lung Neoplasms/genetics , Microscopy , Phenotype
12.
Lancet ; 396(10248): 381-389, 2020 08 08.
Article in English | MEDLINE | ID: mdl-32679111

ABSTRACT

BACKGROUND: Several countries affected by the COVID-19 pandemic have reported a substantial drop in the number of patients attending the emergency department with acute coronary syndromes and a reduced number of cardiac procedures. We aimed to understand the scale, nature, and duration of changes to admissions for different types of acute coronary syndrome in England and to evaluate whether in-hospital management of patients has been affected as a result of the COVID-19 pandemic. METHODS: We analysed data on hospital admissions in England for types of acute coronary syndrome from Jan 1, 2019, to May 24, 2020, that were recorded in the Secondary Uses Service Admitted Patient Care database. Admissions were classified as ST-elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), myocardial infarction of unknown type, or other acute coronary syndromes (including unstable angina). We identified revascularisation procedures undertaken during these admissions (ie, coronary angiography without percutaneous coronary intervention [PCI], PCI, and coronary artery bypass graft surgery). We calculated the numbers of weekly admissions and procedures undertaken; percentage reductions in weekly admissions and across subgroups were also calculated, with 95% CIs. FINDINGS: Hospital admissions for acute coronary syndrome declined from mid-February, 2020, falling from a 2019 baseline rate of 3017 admissions per week to 1813 per week by the end of March, 2020, a reduction of 40% (95% CI 37-43). This decline was partly reversed during April and May, 2020, such that by the last week of May, 2020, there were 2522 admissions, representing a 16% (95% CI 13-20) reduction from baseline. During the period of declining admissions, there were reductions in the numbers of admissions for all types of acute coronary syndrome, including both STEMI and NSTEMI, but relative and absolute reductions were larger for NSTEMI, with 1267 admissions per week in 2019 and 733 per week by the end of March, 2020, a percent reduction of 42% (95% CI 38-46). In parallel, reductions were recorded in the number of PCI procedures for patients with both STEMI (438 PCI procedures per week in 2019 vs 346 by the end of March, 2020; percent reduction 21%, 95% CI 12-29) and NSTEMI (383 PCI procedures per week in 2019 vs 240 by the end of March, 2020; percent reduction 37%, 29-45). The median length of stay among patients with acute coronary syndrome fell from 4 days (IQR 2-9) in 2019 to 3 days (1-5) by the end of March, 2020. INTERPRETATION: Compared with the weekly average in 2019, there was a substantial reduction in the weekly numbers of patients with acute coronary syndrome who were admitted to hospital in England by the end of March, 2020, which had been partly reversed by the end of May, 2020. The reduced number of admissions during this period is likely to have resulted in increases in out-of-hospital deaths and long-term complications of myocardial infarction and missed opportunities to offer secondary prevention treatment for patients with coronary heart disease. The full extent of the effect of COVID-19 on the management of patients with acute coronary syndrome will continue to be assessed by updating these analyses. FUNDING: UK Medical Research Council, British Heart Foundation, Public Health England, Health Data Research UK, and the National Institute for Health Research Oxford Biomedical Research Centre.


Subject(s)
Acute Coronary Syndrome/therapy , Coronavirus Infections/epidemiology , Hospitalization/statistics & numerical data , Pandemics , Pneumonia, Viral/epidemiology , Aged , Aged, 80 and over , Angina, Unstable/therapy , Betacoronavirus , COVID-19 , England/epidemiology , Facilities and Services Utilization , Female , Humans , Male , Middle Aged , Myocardial Revascularization , Non-ST Elevated Myocardial Infarction/therapy , SARS-CoV-2 , ST Elevation Myocardial Infarction/therapy
13.
Cell Rep ; 28(12): 3224-3237.e5, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533043

ABSTRACT

Dysregulated axonal trafficking of mitochondria is linked to neurodegenerative disorders. We report a high-content screen for small-molecule regulators of the axonal transport of mitochondria. Six compounds enhanced mitochondrial transport in the sub-micromolar range, acting via three cellular targets: F-actin, Tripeptidyl peptidase 1 (TPP1), or Aurora Kinase B (AurKB). Pharmacological inhibition or small hairpin RNA (shRNA) knockdown of each target promotes mitochondrial axonal transport in rat hippocampal neurons and induced pluripotent stem cell (iPSC)-derived human cortical neurons and enhances mitochondrial transport in iPSC-derived motor neurons from an amyotrophic lateral sclerosis (ALS) patient bearing one copy of SOD1A4V mutation. Our work identifies druggable regulators of axonal transport of mitochondria, provides broadly applicable methods for similar image-based screens, and suggests that restoration of proper axonal trafficking of mitochondria can be achieved in human ALS neurons.


Subject(s)
Aminopeptidases/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Aurora Kinase B/metabolism , Axons/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Hippocampus/metabolism , Mitochondria/metabolism , Serine Proteases/metabolism , Aminopeptidases/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Aurora Kinase B/genetics , Axons/pathology , Biological Transport, Active , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Female , HEK293 Cells , Hippocampus/pathology , Humans , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/pathology , Rats , Rats, Sprague-Dawley , Serine Proteases/genetics , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Tripeptidyl-Peptidase 1
15.
Br J Cancer ; 121(4): 318-324, 2019 08.
Article in English | MEDLINE | ID: mdl-31303643

ABSTRACT

BACKGROUND: CFI-400945 is a first-in-class oral inhibitor of polo-like kinase 4 (PLK4) that regulates centriole duplication. Primary objectives of this first-in-human phase 1 trial were to establish the safety and tolerability of CFI-400945 in patients with advanced solid tumours. Secondary objectives included pharmacokinetics, pharmacodynamics, efficacy, and recommended phase 2 dose (RP2D). METHODS: Continuous daily oral dosing of CFI-400945 was evaluated using a 3+3 design guided by incidence of dose-limiting toxicities (DLTs) in the first 28-day cycle. Safety was assessed by CTCAE v4.0. ORR and CBR were evaluated using RECIST v1.1. RESULTS: Forty-three patients were treated in dose escalation from 3 to 96 mg/day, and 9 were treated in 64 mg dose expansion. After DLT occurred at 96 and 72 mg, 64 mg was established as the RP2D. Neutropenia was a common high-grade (19%) treatment-related adverse event at ≥ 64 mg. Half-life of CFI-400945 was 9 h, with Cmax achieved 2-4 h following dosing. One PR (45 cycles, ongoing) and two SD ≥ 6 months were observed (ORR = 2%; CBR = 6%). CONCLUSIONS: CFI-400945 is well tolerated at 64 mg with dose-dependent neutropenia. Favourable pharmacokinetic profiles were achieved with daily dosing. Response rates were low without biomarker pre-selection. Disease-specific and combination studies are ongoing. TRIAL REGISTRATION: Clinical Trials Registration Number - NCT01954316 (Oct 1st, 2013).


Subject(s)
Antineoplastic Agents/adverse effects , Indazoles/adverse effects , Indoles/adverse effects , Neoplasms/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adult , Aged , Dose-Response Relationship, Drug , Female , Humans , Indazoles/pharmacokinetics , Indoles/pharmacokinetics , Male , Middle Aged , Neutropenia/chemically induced
16.
Nat Commun ; 10(1): 2678, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31213601

ABSTRACT

Myeloid cells contribute to tumor progression, but how the constellation of receptors they express regulates their functions within the tumor microenvironment (TME) is unclear. We demonstrate that Fcmr (Toso), the putative receptor for soluble IgM, modulates myeloid cell responses to cancer. In a syngeneic melanoma model, Fcmr ablation in myeloid cells suppressed tumor growth and extended mouse survival. Fcmr deficiency increased myeloid cell population density in this malignancy and enhanced anti-tumor immunity. Single-cell RNA sequencing of Fcmr-deficient tumor-associated mononuclear phagocytes revealed a unique subset with enhanced antigen processing/presenting properties. Conversely, Fcmr activity negatively regulated the activation and migratory capacity of myeloid cells in vivo, and T cell activation by bone marrow-derived dendritic cells in vitro. Therapeutic targeting of Fcmr during oncogenesis decreased tumor growth when used as a single agent or in combination with anti-PD-1. Thus, Fcmr regulates myeloid cell activation within the TME and may be a potential therapeutic target.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carrier Proteins/metabolism , Melanoma, Experimental/immunology , Membrane Proteins/metabolism , Monocytes/immunology , Skin Neoplasms/immunology , Animals , Antigen Presentation/drug effects , Antigen Presentation/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinogenesis/drug effects , Carcinogenesis/immunology , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Carrier Proteins/immunology , Cell Line, Tumor/transplantation , Cell Movement/drug effects , Cell Movement/immunology , Female , Lymphocyte Activation/immunology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/mortality , Melanoma, Experimental/pathology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Survival Analysis , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
17.
Methods Mol Biol ; 1683: 89-112, 2018.
Article in English | MEDLINE | ID: mdl-29082489

ABSTRACT

Robust high-content screening of visual cellular phenotypes has been enabled by automated microscopy and quantitative image analysis. The identification and removal of common image-based aberrations is critical to the screening workflow. Out-of-focus images, debris, and auto-fluorescing samples can cause artifacts such as focus blur and image saturation, contaminating downstream analysis and impairing identification of subtle phenotypes. Here, we describe an automated quality control protocol implemented in validated open-source software, leveraging the suite of image-based measurements generated by CellProfiler and the machine-learning functionality of CellProfiler Analyst.


Subject(s)
High-Throughput Screening Assays , Machine Learning , Molecular Imaging , Quality Control , Cells, Cultured , Image Processing, Computer-Assisted , Microscopy , Molecular Imaging/methods , Molecular Imaging/standards , Software
18.
PLoS Pathog ; 13(5): e1006363, 2017 May.
Article in English | MEDLINE | ID: mdl-28505176

ABSTRACT

A key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction. Based on a combination of imaging features, we identified mutants impaired for intracellular survival. We then characterized the phenotype of infection with each mutant by profiling the induced macrophage cytokine response. Taking a systems-level approach to understanding the biology of identified mutants, we performed a multiparametric analysis combining pathogen and host phenotypes to predict functional relationships between mutants based on clustering. Strikingly, mutants defective in two well-known virulence factors, the ESX-1 protein secretion system and the virulence lipid phthiocerol dimycocerosate (PDIM), clustered together. Building upon the shared phenotype of loss of the macrophage type I interferon (IFN) response to infection, we found that PDIM production and export are required for coordinated secretion of ESX-1-substrates, for phagosomal permeabilization, and for downstream induction of the type I IFN response. Multiparametric clustering also identified two novel genes that are required for PDIM production and induction of the type I IFN response. Thus, multiparametric analysis combining host and pathogen infection phenotypes can be used to identify novel functional relationships between genes that play a role in infection.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Mycobacterium tuberculosis/pathogenicity , Phagosomes/microbiology , Tuberculosis/microbiology , Animals , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cell Line , Cytokines/immunology , Cytokines/metabolism , Gene Library , Host-Pathogen Interactions , Macrophages/immunology , Macrophages/microbiology , Mice , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/immunology , Phagosomes/immunology , Phenotype , Tuberculosis/immunology , Virulence
19.
Biomaterials ; 137: 49-60, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28535442

ABSTRACT

Stem cells respond to the physicochemical parameters of the substrate on which they grow. Quantitative material activity relationships - the relationships between substrate parameters and the phenotypes they induce - have so far poorly predicted the success of bioactive implant surfaces. In this report, we screened a library of randomly selected designed surface topographies for those inducing osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell shape features, surface design parameters, and osteogenic marker expression were strongly correlated in vitro. Furthermore, the surfaces with the highest osteogenic potential in vitro also demonstrated their osteogenic effect in vivo: these indeed strongly enhanced bone bonding in a rabbit femur model. Our work shows that by giving stem cells specific physicochemical parameters through designed surface topographies, differentiation of these cells can be dictated.


Subject(s)
Bone Regeneration/physiology , Bone Substitutes , Computer Simulation , Osteogenesis/physiology , Tissue Scaffolds/chemistry , Animals , Cell Adhesion , Cell Proliferation , Cells, Cultured , Female , Humans , Mechanical Phenomena , Mesenchymal Stem Cells/physiology , Nanostructures , Rabbits , Surface Properties , Tissue Engineering/methods , Titanium/chemistry
20.
Proc Natl Acad Sci U S A ; 114(12): 3127-3132, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28270606

ABSTRACT

Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 Ki = 0.09 ± 0.02 nM; cellular Mps1 EC50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic , Humans , Mice , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , RNA Interference , RNA, Small Interfering/genetics , Tumor Burden , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...