Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 563, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740899

ABSTRACT

Targeting the estrogen receptor alpha (ERα) pathway is validated in the clinic as an effective means to treat ER+ breast cancers. Here we present the development of a VHL-targeting and orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of ERα. In vitro studies with this PROTAC demonstrate excellent ERα degradation and ER antagonism in ER+ breast cancer cell lines. However, upon dosing the compound in vivo we observe an in vitro-in vivo disconnect. ERα degradation is lower in vivo than expected based on the in vitro data. Investigation into potential causes for the reduced maximal degradation reveals that metabolic instability of the PROTAC linker generates metabolites that compete for binding to ERα with the full PROTAC, limiting degradation. This observation highlights the requirement for metabolically stable PROTACs to ensure maximal efficacy and thus optimisation of the linker should be a key consideration when designing PROTACs.


Subject(s)
Estrogen Receptor alpha , Proteolysis , Von Hippel-Lindau Tumor Suppressor Protein , Humans , Estrogen Receptor alpha/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Female , Proteolysis/drug effects , Animals , Administration, Oral , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage
2.
Bioorg Med Chem ; 63: 116729, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35439688

ABSTRACT

In this article, we report the discovery of a series of pyrimidopyridones as inhibitors of IRAK4 kinase. From a previously disclosed 5-azaquinazoline series, we found that switching the pyridine ring for an N-substituted pyridone gave a novel hinge binding scaffold which retained potency against IRAK4. Importantly, introduction of the carbonyl established an internal hydrogen bond with the 4-NH, establishing a conformational lock and allowing truncation of the large basic substituent to a 1-methylcyclopyl group. Subsequent optimisation, facilitated by X-ray crystal structures, allowed identification of preferred substituents at both the pyridone core and pyrazole. Subsequent combinations of optimal groups allowed control of lipophilicity and identification of potent and selective inhibitors of IRAK4 with better in vitro permeability and lower clearance.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Pyridones , Molecular Conformation , Pyridones/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...