Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 570(7761): 319-325, 2019 06.
Article in English | MEDLINE | ID: mdl-31182856

ABSTRACT

Offshore Antarctic polynyas-large openings in the winter sea ice cover-are thought to be maintained by a rapid ventilation of deep-ocean heat through convective mixing. These rare phenomena may alter abyssal properties and circulation, yet their formation mechanisms are not well understood. Here we demonstrate that concurrent upper-ocean preconditioning and meteorological perturbations are responsible for the appearance of polynyas in the Weddell Sea region of the Southern Ocean. Autonomous profiling float observations-collected in 2016 and 2017 during the largest polynyas to form near the Maud Rise seamount since 1976-reveal that the polynyas were initiated and modulated by the passage of severe storms, and that intense heat loss drove deep overturning within them. Wind-driven upwelling of record strength weakened haline stratification in the upper ocean, thus favouring destabilization in 2016 and 2017. We show that previous Weddell polynyas probably developed under similarly anomalous conditions, which are associated with a mode of Southern Hemisphere climate variability that is predicted to strengthen as a result of anthropogenic climate change.


Subject(s)
Climate Change/statistics & numerical data , Ice Cover , Models, Theoretical , Antarctic Regions , Human Activities , Salinity , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...