Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 243: 123327, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35240367

ABSTRACT

The diagnosis of cancer and other diseases using data from non-specific sensors - such as the electronic tongues (e-tongues) - is challenging owing to the lack of selectivity, in addition to the variability of biological samples. In this study, we demonstrate that impedance data obtained with an e-tongue in saliva samples can be used to diagnose cancer in the mouth. Data taken with a single-response microfluidic e-tongue applied to the saliva of 27 individuals were treated with multidimensional projection techniques and non-supervised and supervised machine learning algorithms. The distinction between healthy individuals and patients with cancer on the floor of mouth or oral cavity could only be made with supervised learning. Accuracy above 80% was obtained for the binary classification (YES or NO for cancer) using a Support Vector Machine (SVM) with radial basis function kernel and Random Forest. In the classification considering the type of cancer, the accuracy dropped to ca. 70%. The accuracy tended to increase when clinical information such as alcohol consumption was used in conjunction with the e-tongue data. With the random forest algorithm, the rules to explain the diagnosis could be identified using the concept of Multidimensional Calibration Space. Since the training of the machine learning algorithms is believed to be more efficient when the data of a larger number of patients are employed, the approach presented here is promising for computer-assisted diagnosis.


Subject(s)
Mouth Neoplasms , Saliva , Algorithms , Electronic Nose , Humans , Machine Learning , Mouth Neoplasms/diagnosis , Support Vector Machine
2.
Talanta ; 222: 121444, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33167198

ABSTRACT

The development of simple detection methods aimed at widespread screening and testing is crucial for many infections and diseases, including prostate cancer where early diagnosis increases the chances of cure considerably. In this paper, we report on genosensors with different detection principles for a prostate cancer specific DNA sequence (PCA3). The genosensors were made with carbon printed electrodes or quartz coated with layer-by-layer (LbL) films containing gold nanoparticles and chondroitin sulfate and a layer of a complementary DNA sequence (PCA3 probe). The highest sensitivity was reached with electrochemical impedance spectroscopy with the detection limit of 83 pM in solutions of PCA3, while the limits of detection were 2000 pM and 900 pM for cyclic voltammetry and UV-vis spectroscopy, respectively. That detection could be performed with an optical method is encouraging, as one may envisage extending it to colorimetric tests. Since the morphology of sensing units is known to be affected in detection experiments, we applied machine learning algorithms to classify scanning electron microscopy images of the genosensors and managed to distinguish those exposed to PCA3-containing solutions from control measurements with an accuracy of 99.9%. The performance in distinguishing each individual PCA3 concentration in a multiclass task was lower, with an accuracy of 88.3%, which means that further developments in image analysis are required for this innovative approach.


Subject(s)
Metal Nanoparticles , Prostatic Neoplasms , Antigens, Neoplasm , Biomarkers , Biomarkers, Tumor , Gold , Humans , Machine Learning , Male , Prostatic Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...